摘要
多目标多传感器跟踪系统由数据关联和目标状态估计两部分组成,数据关联是多目标跟踪系统研究的核心。数据关联和目标状态估计两部分既有一定的独立性又有密切的联系,而将两部分合理地结合对提高跟踪系统的性能是重要的。该文以跟踪目标的有效预测区域为依据,利用基于Mahalanobis距离的模糊均值聚类方法解决数据关联问题,在一定程度上将数据关联和目标状态估计两个不同的过程相结合,仿真计算说明了其有效性。
Multitarget-multisensor tracking systems consist of data correlation and state estimation. The multitarget tracking is made interesting by the data association problem. The data correlation and state estimation are both certainly independent and closely relative, but the performance of tracking systems can be improved by suitable incorporating the two components. In this paper, a fuzzy correlation approach is presented based on fuzzy clustering means algorithm with Mahalanobis distance. The approach, in a sense, fuses two different procedures of data correlation and state estimation. The simulation result using Monte Carlo method is given to demonstrate the efficiency of the new approach.
出处
《电子科技大学学报》
EI
CAS
CSCD
北大核心
2001年第6期638-642,共5页
Journal of University of Electronic Science and Technology of China
基金
国家自然科学基金重点资助项目No. 69732010。
关键词
有效预测区域
多目标多传感器跟踪系统
模糊数据关联
multitarget-multisensor tracking
data correlation
fuzzy clustering
Mahalanobis distance