期刊文献+

人工神经网络在预测斜轧穿孔毛管偏差中的应用 被引量:5

Application of artificial neural networks on predicting deviation of tube in cross piercing process
下载PDF
导出
摘要 斜轧穿孔中毛管质量与许多工艺参数 ,如辊型、送进角、顶头前伸量及温度 ,以及设备性能参数如穿孔机刚度、加工精度和顶杆振动等有关。传统的轧制理论难以解决其质量问题 ,应用人工神经网络则能较好地解决毛管质量的预测问题。应用实测的工艺参数与其对应的毛管精度参数 ,训练和学习网络的权值和阈值 ,建立起模拟穿孔机生产的数学模型 ,即网络模型。 The quality of tube hollow in cross piercing process is concerned with complicated factors, such as technical parameters including roller shape, feed angle, plug advance and temperature, and the piercing mill properties including stiffness and precision of the mill manufactured, vibration of the plug and driven systems. It is difficult to solve further problems on qualities using traditional rolling theory, and the prediction of tube hollow qualities is even more difficult. The artificial neural networks were used to solve the above problems easily. Weights and thresholds of the networks were learnt by experimental data and the model has been established in production. Technical parameters optimized and deviation of tube have been predicted.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2001年第5期862-866,共5页 The Chinese Journal of Nonferrous Metals
关键词 斜轧穿孔 神经网络 数学模型 壁厚偏差 预测 工艺优化 cross piercing artificial neural networks mathematical modal
  • 相关文献

参考文献10

二级参考文献17

共引文献124

同被引文献45

  • 1李连诗.钢管塑性变形原理[M].北京:冶金工业出版社,1985..
  • 2Urbanski S, Kazanecki J. Assessment of the strain distribution in the rotary piercing process by the finite element method[J ]. Mater Process Technol, 1994,45:335 - 340.
  • 3Hyvarinen A. Independent component analysis: algorithms and applications[J ]. Neural Networks, 2002,13: 411 - 430.
  • 4Li R F, Wang X Z. Dimension reduction of process dynamic trends using independent component analysis[J ].Computers and Chemical Engineering, 2002,26:467- 473.
  • 5Chen Q, Wynne R J, Goulding P. The application of principal component analysis and kernel density estimation to enhance process monitoring[J ]. Control Engineering Practice, 2000, 8:531 - 543.
  • 6Wang J, Chang C I. Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis [ J ]. IEEE Transactions on Geoscience and Remote and Remote Sensing, 2006,44:1586 - 1600.
  • 7Kano M, Hasebe S, Hashimoto I, et al. Evolution of multivariate statistical process control application of independent component analysis and external analysis [ J ]. Computers and Chemical Engineering, 2004, 28:1157 - 1166.
  • 8王北明.热轧钢管的质量[M].北京:冶金工业出版社,1987.
  • 9URBANSKI S,KAZANECKI J.Assessment of the strain distribution in the rotary piercing process by the finite element method[J].J Mater Process Technol,1994,45:335-340.
  • 10NOMIKOS P,MACGREGOR J F.Multi2way partial least square in monitoring batch processes[J].Chemometrics and Intelligent Laboratory Systems,1995,30 (1):97-108.

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部