摘要
大型热力系统的控制系统必须能够检测传感器故障,并采取相应的措施,保证控制过程的顺利进行。针对热力系统这类时滞系统,提出一种基于时间序列神经网络的故障检测新方法,神经网络的训练采用Powell方法,其收敛速度快、过程稳定。本方法具有在线学习、可诊断多个传感器故障等优点,对锅炉实际试验结果表明本方法行之有效。
To keep the capability of control process, the control system of thermodynamic system must be able to detect sensor failure and take related measures. A sensor failure detecting method of time-lag system based on time series neural network is proposed. Neural network is trained with Powell method, which is rapid and stable. This method has abilities of on-line working and identifying multiple sensor failure. The practical experimental results of boiler system show that this method is very useful.
出处
《电站系统工程》
北大核心
2001年第6期371-374,共4页
Power System Engineering
基金
国家攀登B项目(85-35)