期刊文献+

脑皮层的立体脑回图展成平面的新方法 被引量:2

Flattening of the 3D Cortical Surface for Improved 2D Visualization
下载PDF
导出
摘要 用核磁共振 (MRI)大脑断层图 ,分析患者的脑皮层解剖特征是一项困难的工作 .一个可能的途径是将分割后的脑皮层进行三维重建 .但是重建后的三维立体脑皮层图 ,如不经过 36 0°旋转仅能看到脑皮层上脑回的一部分 .因此还需要展开成平面脑回图以看到脑回的完整走向 .文中提出的投影方法能够在变形尽量小的前提下将立体脑回图展开在平面上 ,直观地看到脑回走向的全貌 。 Understanding cortical brain anatomy is a complex task, and quite impossible when consulting a MRI study of the brain in a slice by slice fashion. A better interpretation can be obtained via a 3D volume rendering of the segmented cortex. However classical volume rendering provides only a partial view of the cortical surface, from a certain angle. Therefore several renderings have to be made, and interpreted all together to identify the sulci of the brain. In this paper, a projection method is presented. First, a MR image set of the brain is segmented, i.e. all grey and white matter tissues are isolated via an approach based on the principles of seeded region growing, supervised clustering and morphological filtering. The spinal cord is cut at the level of the bottom of the cerebellum. Next, two hemi ellipsoids are shaped interactively by adjusting their principle axes and common center point, so that they fit as close as possible to the top and bottom parts of the brain. This interactive procedure is supported by a software, which provides three orthogonal views. The axes of the ellipsoids are defined on the orthogonal sections of maximal brain extent. For each hemi ellipsoid, a rectangular regular grid of points in the (u,v) plane of projection is attributed corresponding points on the ellipsoidal surface, so that the center of the original rectangle is mapped to the top of the hemi ellipsoid and the points lying on the perimeter of the grid are moved towards the perimeter at the bottom of the hemi ellipsoid. This wrapping yields points on the hemi ellipsoidal surface that are no longer uniform. In order to obtain good projection results, the distances are homogenized by an iterative method. Once the points are homogenized, both the hemi ellipsoidal surfaces are mapped towards the binary image of the brain by means of a deformable surface model. After each deformation step, the distances between the points are homogenized by an enhanced version of the Fixed Point algorithm. At last, a ray is fired for each point normal to the obtained dilated surface. At the intersection of these rays with the original segmented brain, we compute the shading analogous to volume rendering. The projection method described in this paper has the advantage that the complete cortical surface is unwrapped in a 2D plane without severe geometric distortion. Sulci can be followed in their entirety, so that it is much easier to recognize them.
出处 《计算机学报》 EI CSCD 北大核心 2001年第7期753-757,共5页 Chinese Journal of Computers
基金 中国和比利时佛拉芒大区政府国际合作项目 (国科外字 [1997] 2 3 4号 比利时方编号 :BIL97/72 ) 国家自然科学基金 (60 0 72 0 2 6)
关键词 三维图形展开 图像重建 核磁共振图像 脑回图 脑皮层 临床诊断 医学 flattering 3D image, rendering, MRI, brain sulci image
  • 相关文献

参考文献13

  • 1[1]Hubel D, Wiesel T. Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey. Journal of Computer Neurol, 1972, 146:421-450
  • 2[2]Van Essen D, Zeki S. The topographic organization of rhesus monkey prestriate cortex. Journal of Physiol(Lond), 1978, 277:193-266
  • 3[3]Dale A, Sereno M. Improved localization of activity by combining EEG and MEG with MRI cortical surface reconstruction: A linear approach. Journal of Cognition Neuroscience, 1993, 5:162-176
  • 4[4]Schwartz E, Shaw A, Wolfson E. A numerical solution to the generalized mapmaker's problem: Flattening nonconvex polyhedral surfaces. IEEE Trans Pattern Analysis Machine Intelligence, 1989, 11(9):1005-1008
  • 5[5]Wolfson E, Schwartz E. Computing minimal distances on arbitrary two-dimensional polyhedral surfaces. IEEE Trans Pattern Analysis Machine Intelligence, 1989, 11(9):1001-1005
  • 6[6]Tombeur D. Investigations into unitary and non-Euclidean geometry of biomedical images[Ph D dissertation]. Object Oriented Technology for Image Manipulation, Vrije Universiteit Brussel, 1994
  • 7[7]Carman G, Drury H, Van Essen D. Computational methods for reconstructing and unfolding the cerebral cortex. Cerebral Cortex, 1995, 5:506-517
  • 8[8]Davatzikos C, Bryan R. Using a deformable surface model to obtain a shape representation of the cortex. IEEE Trans Medical Imaging, 1996, 15(6):785-795
  • 9[9]Van Essen D, Drury H. Structural and functional analysis of human cerebral cortex using a surface-based atlas. The Journal of Neuroscience, 1997, 17(18):7079-7102
  • 10[10]Salomie A, Nyssen E, Cornelis J. Multivariate techniques for medical image segmentation. In: Proc Signal Processing Symposium SPS 98, Leuven, 1998, 2:155-158

同被引文献13

  • 1罗述谦 周果宏.医学图像处理与分析[M].北京:科学出版社,2003.1-2.
  • 2Fischl B, Sereno MI, Dale AM. Cortical surface-based analysis Ⅱ: inflation, flattening and a surface-based coordinate system[J]. Neuro Image,1999,9(2):195-207.
  • 3Tao XD, Prince JL, Christos Davatzikos C. Using a statistical shae model to extract sulcal curves on the outer cortex of the human brain[J]. IEEE Transactions on Medical Imaging,2002,21(5):513-524.
  • 4Thompson PM, Mega MS, Vidal C. Detecting disease-specific patterns of brain structure using cortical pattern matching and a population-based probabilistic brain atlas[C]. In Proc 17^th International Conference on information processing in Medical Imaging(IPMI2001), pages 488-501, Davis, CA, USA, 2001,18-22.
  • 5Thompson PM, Toga AW, A framework for computational anatomy[J]. In Computing and Visualization in Science,2002,5(1):1-12.
  • 6Desbrun M, Meyer M, Alliez P. Intrinsic parametrizations of surface meshes[C]. In Proceedings of Eurographics,2002.
  • 7Gu X, Yau S. Computing conformal structures of surfaces[J]. Communications in Information and Systems,2002,2(2):121-146.
  • 8Angenent S, Haker S, Tannenbaum A, et al. On the laplace-beltrami operator and brain surface flattening[J]. IEEE Transactions on Medical Imaging,1997,18(8):700-711.
  • 9阎华 罗述谦.MRI中大脑组织提取的新方法[C]..99中国生物医学电子学学术年会论文集[C].南京,1999..
  • 10蔡葵,周作福,陈敏,王文超,周诚,李果珍.磁共振影像对判定中央沟的价值[J].中国医学影像技术,2000,16(2):81-83. 被引量:4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部