期刊文献+

特征选择方法中的信号分析方法研究 被引量:4

Method of Feature Selection Using Signal Analysis
下载PDF
导出
摘要 特征选择是模式识别领域中最重要的环节 ,也是最根本的论题 .论文从随机信号的傅立叶分析中自相关函数与谱密度函数之间的对应关系出发 ,提出了一种基于自相关函数的特征选择方法 ,并以实验方式进行了有效性验证 .其研究意义还在于将这一特征选择方法与人工智能中的归纳学习方法相结合 ,其归纳性能比传统的熵最小化准则更为优越 . Feature selection is one of the most important issues in pattern recognition. From the viewpoint of signal analyses that there is a correlation between the signal's auto correlation function and spectrum density, a new kind of method for feature selection is presented in this paper. The validity of this method is verified through experiments. An important implication of the research work is that it finds a joint between feature selection and inductive learning using decision tree, and the result of that combination shows that it has higher performance than ID3 whose inductive strategy is the rule of minimal entropy.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2001年第1期74-78,56,共6页 JUSTC
基金 国家自然科学基金
关键词 特征选择 决策树 归纳学习 模式识别 自相关函数 谱密度函数 人工智能 feature selection decision tree inductive learning
  • 相关文献

参考文献3

  • 1李金宗,模式识别导论,1994年
  • 2郑君里,信号与系统,1981年
  • 3Hunt E B,Experiments in Induction,1966年

同被引文献37

  • 1Dash M., Liu H.. Feature selection for classification. Intelligent Data Analysis, 1997, 1(3): 131~156
  • 2Siedklecki W., Sklansky J.. On automatic feature selection. International Journal of Pattern Recognition and Aritifical Intelligence, 1988, 2: 197~220
  • 3Sheinvald J., Dom B., Niblack W.. A modelling approach to feature selection. In: Proceedings of the 10th International Conference on Pattern Recognition, 1990, 1: 535~539
  • 4Almuallim H., Dietterich T.G.. Learning with many irrelevant features. In: Proceedings of the 9th National Conference on Artificial Intelligence, Cambridge, Massachusetts, 1992, 547~552
  • 5Narendra P.M., Fukunaga K.. A branch and bound algorithm for feature selection. IEEE Transactions on Computers, 1977, C-26 (9): 917~922
  • 6Kira K., Rendell L.A.. The feature selection problem: traditional methods and a new algorithm. In: Proceedings of the 9th National Conference on Artificial Intelligence, 1992, 129~134
  • 7Cardie C.. Using decision trees to improve case-based learning In: Proceedings of the 10th International Conference on Machine Learning, 1993, 25~32
  • 8Ucciardi A.N., Gose E.E.. A comparison of seven techniques for choosing subsets of pattern recognition. IEEE Transactions on Computers, 1971, C-20: 1023~1031
  • 9Liu H., Setiono R.. A probabilistic approach to feature selection: A filter solution. In: Proceedings of International Conference on Machine Learning, 1996, 319~327
  • 10Liu H., Setiono R.. Feature selection and classification: A probabilistic wrapper approach, In: Proceedings of the 9th International Conference on Industrial and Engineering Applications of AI and ES, 1996, 284~292

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部