期刊文献+

解耦问题的发展 被引量:4

Development of Decoupling Problem
下载PDF
导出
摘要 解耦问题包括干扰解耦和输入输出解耦设计,它的设计思想在控制学科发展的初期就已形成,目前已经成为进行多变量系统设计的典型问题之一。本文综述了解耦问题的产生和发展过程,重点介绍了重要的研究成果和具有代表性的方法,最后对其发展前景进行了展望。 Decoupling problem includes disturbance decoupling and input-output decoupling. The main idea of decoupling was developed during the early evolution of control theory, and now it has become a typical research field in multivariable system design. The primary purpose of this paper is to review the developing process of decoupling problem, introduce some important research results and its method, and finally, anticipate some development in future.
出处 《自动化博览》 2001年第4期6-10,共5页 Automation Panorama1
基金 国家自然科学基金(项目批准号:69635010) 863计划和教育部资助项目
关键词 解耦 干扰解耦 输入输出解耦 鲁棒解耦 非线性解耦 控制理论 decoupling;disturbance decoupling;input-output decoupling;robust decoupling;morgan's problem;nonlinear decoupling.
  • 相关文献

参考文献14

  • 1[1]A. S. Boksenhoom, R. Hood, General Algebraic Method to Control Analysis of Complex Engine Types, NACA-TR-930, Washington D.C. 1949.
  • 2[2]B. S. Morgan, The Synthesis of Linear Multivariable System by state feedback, J.A.C.C., Vol.64, 468-472,1964.
  • 3[3]P.L. Falb, W.A. Wolovich, Decoupling in the Design and Synthesis of Multivarible Control Systems, IEEE Trans. Automat. Contr., AC-12, 1967, 651-659.
  • 4[4]M.E. Waren, S.K. Mitter, Generic Solovability of Morgan's Problem, IEEE Trans. Automat. Contr., AC-20, 1975, 268-269.
  • 5[5]W.M. Wonham, A.S. Morse, Decoupling and Pole Assignment in Linear Mulltivariable Systems, A Generic Approach, SIAM. J. Control, Vol. 8, 1970, 1-18.
  • 6[6]J. Descusse, J.F. Lafay, M. Malabre, Solution to Morgan's Problem, IEEE Trans. Automat. Contr. Vol.33, No.8, Aug.1988, 732-739.
  • 7[7]A.N.Herrera, J.F.Lafay, New Results about Morgan's Problem, IEEE Trans. Automat. Contr., Vol.38, No.12, 1993, 1834-1838.
  • 8[8]A. Isidori, Control of Nonlinear System Via Dynamic State Feedback, Algebraic and Geometric Method in Nonlinear Control Theory, Reidel, Dordvecht, 121, 1986.
  • 9[9]M. Fliess, Nonlinear Control Theory and Differential Algebra, Proc. II ASA Conf. Modelling Adaptive control, Sopron, Hungary, 1986.
  • 10[10]M. Benedetto, J. Grizzle, Rank Invariants of Nonlinear Systems. SIAM J. Control and Optimization, Vol.27, No.3, 658-672, 1989.

同被引文献18

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部