期刊文献+

广义强补问题的Wiener-Hopf方程的变换方法(英文)

Transform Method of Wiener-Hopf Equations for Generalized Strongly Complementarity Problems
下载PDF
导出
摘要 利用变量替换的技巧 ,建立了广义强补问题与 Wiener- Hopf方程之间的等价性 .这个等价性被用于建议和分析若干求广义强补问题近似解的迭代算法 . We establish an equivalence between the generalized strongly complementarity problems and the Wiener Hopf equations by using a change of variables technique. This equivalence is used to suggest and analyze a number of iterative algorithms for finding approximate solutions to the generalized strongly complementarity problems.
作者 曾六川
出处 《上海师范大学学报(自然科学版)》 2001年第4期1-6,共6页 Journal of Shanghai Normal University(Natural Sciences)
基金 Supported by NNSF of China(1980 10 2 3)
关键词 广义强补问题 变量替换 不动点 收敛性 WIENER-HOPF方程 迭代算法 等价性 complementarity problems change of variables algorithms fixed points convergence Wiener Hopf equations
  • 相关文献

参考文献16

  • 1COTTLE R W, GIANNESSI F, LIONS J L.Variational Inequalities and Complementarity Problems: Theory and Applications[M]. NewYork: John Wiley and Sons, 1980.
  • 2COTTLE R W, PANG J S, STONE R. The Linear Complementarity Problem[M]. New York:Academic Press, 1992.
  • 3GIANNESSI F, MAUGERI A. Variational Inequalities and Network EquilibriumProblems[M]. New York:Plenum Press, 1995.
  • 4LEMKE C E. Bimatrix Equilibrium Points and Mathematical Programming[J]. ManagementSciences, 1965,11: 681-689.
  • 5COTTLE R W, DANTZIG G B. Complementarity Pivot Theory of MathematicalProgramming[J]. Linear Algebra and Applications, 1968, 1:163-185.
  • 6ISAC G. Complementarity Problems[M]. Lecture Notes in Mathematics, Berlin:Springer-Verlag, 1992,1528.
  • 7NOOR M A. General Nonlinear Complementarity Problems in Analysis, Geometry, andGroups: A Riemann Legacy Volume[M]. Edited by SRIVASTAVA H M and RASSIAS T M, Palm Harbor,Florida: Hadronic Press, 1993, 337-371.
  • 8NOOR M A. Fixed-Point Approach for Complementarity Problems[J]. Journal ofMathematical Analysis and Applications, 1988, 133: 437-448.
  • 9NOOR M A, ZARAE S. An Iterative Scheme for Complementarity Problems[J]. EngineeringAnalysis, 1986,3: 240-243.
  • 10VAN BOKHOVEN W M. A Class of Linear Complementarity Problems Solvable inPolynomial Time. in:Technical Report [M]. Department of Electrical Engineering, TechnicalUniversity, Holland: Eindhoven,1980.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部