期刊文献+

有界域中的微分算子和正则半群(英文)

Differential Operators and Regularized Semigroups on Bounded Domain
下载PDF
导出
摘要 设Ω Rn是一个有界区域 .如果 P(ξ)是一个 2 m次实系数椭圆多项式 ,利用 Sobolev嵌入定理和正则半群的内插定理 ,证明了当 k≥ n2 m| 12 - 1p| (1<p <∞ )时 Ap (具有 Dirichlet边界条件 )在 L p (Ω)中 ,当k >n4m( k∈ N0 )时 A1在 L1(Ω)中 ,A∞ 在 L∞ (Ω)中 ,A0 在 C0 (Ω )中和 AC在 C(Ω)中生成一个 ( 1-Δp) - km -正则群 .结果表明在有界区域中偏微分算子比在 Rn 中具有更好的正则性 . Let ΩR n be a bounded open set. When P(ξ) is a real coefficient elliptic polynomial of order 2m, by using the Sobolev's imbedding theorem and an interpolation extension theorem of regularized semigroup, we show that A p(with Dirichlet boundary conditions) generates a (1-Δ p) -km regularized group on L p(Ω)(1<p<∞) if k≥n2m|12-1p| and so does A 1 on L 1(Ω), A ∞ on L ∞ (Ω), A 0 on C 0(Ω) and A C on C() if >n4m(k∈N 0).Our results show that on a bounded domain, partial differential operators are more regular than on R n.
作者 张寄洲
出处 《上海师范大学学报(自然科学版)》 2001年第4期7-13,共7页 Journal of Shanghai Normal University(Natural Sciences)
基金 This project is supported by the Natural Science Foundation of China and the Science Founda-tion of Science and Technology Committee of Shanghai(N.OOJC140 5 7)
关键词 正则半群 微分算子 有界域 SOBOLEV嵌入定理 内插定理 DIRICHLET边界条件 regularized semigroup differential operator bounded domain
  • 相关文献

参考文献12

  • 1ARENDT W. Sobolev imbedding andintegrated semigroups [M]. L N in Pure and Appl Math. New York:Marcel Dekker, 1991, 29-40.
  • 2HORMANDER L. Estimates for translation invariant operators in Lp spaces[J]. ActaMath, 1960, 104: 93-140.
  • 3BOYADZHIEV K, DELAUBENFELS R. Boundary values of holomorphic semigroups[J]. ProcAmer Math Soc, 1993, 118: 113-118.
  • 4HEIBER M. Integrated semigroups and differential operators on Lp [J]. Dissertation,Tübingen, 1989.
  • 5SJOSTRAND S. On the Riesz means of the solutions of the Schrodinger equation[J].Ann Scuola Norm Sup Pisa, 1970, 24: 331-348.
  • 6ZHENG Q. Abstract differential operators and Cauchy problems[J]. TübingerBerichte zur Funktionalanalysis,1994-1995, 4: 273-280.
  • 7DELAUBENFELS R. Existence families, functional calculi and evolution equations[J].Lect Notes Math,Berlin: Springer, 1994, Vol. 1570.
  • 8TANAKA N, MIYADERA I. Exponentially bounded C-semigroups and integratedsemigroups[J]. Tokyo J Math, 1989, 12: 99-115.
  • 9DELAUBENFELS R. C-semigroups and strongly continuous semigroups[J]. Israel J Math,1993, 81: 227-255.
  • 10PAZY A. Semigroups of Linear Operators and Applications to Partial DifferentialEquations[M]. New York:Springer, 1983.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部