期刊文献+

具调和振子的非线性Schrodinger方程 被引量:2

ON NONLINEAR CHRODINGER EQUATIONS WITH HARMONIC OSCILLATOR
原文传递
导出
摘要 考虑具调和振子的非线性Schrodinger方程的Cauchy问题,采用Galerkin方法证 明了整体强解的存在性,使用能量估计方法证明了整体强解的唯一性. In this paper we consider the Cauchy problem for the nonlinear Schrodinger equations with harmonic oscillator. By the Galerkin expansion procedure using the eigen- functions of the harmonic oscillator, we can show that the nonlinear initial value problem in one space dimension has uniquely global strong solutions.
出处 《应用数学学报》 CSCD 北大核心 2001年第4期554-560,共7页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(19971011号)资助项目.
关键词 非线性薛定谔方程 调和振子 GALERKIN方法 整体强解 存在唯一性 薛定谔方法 Canchy问题 Nonlinear Schrodinger equation, harmonic oscillator, Galerkin Method,global strong solution, existence and uniqueness
  • 相关文献

参考文献2

  • 1[1]Lange H. On Nonlinear Schrodinger Equations in the Theory of Quantum Mechanical Dissipative Systems. Nonlinear Analysis TMA, 1985, 9(10): 1115-1133
  • 2[2]Yosida K. Functional Analysis. Berlin, Heidelberg: Springer-Verlag, 1980

同被引文献19

  • 1叶耀军.一类非线性Schrodinger方程的整体小解[J].应用数学学报,2006,29(1):91-96. 被引量:2
  • 2Brezis H, Gallouet T. Nonlinear Schrodinger evolution equations [J]. Non Anl, 1980, 4(2) :677 -681.
  • 3Zhang Jian. Sharp conditions of global existence for nonlinear Schrodinger and Klein - Gordon equations [ J ]. Nonlinear Analysis, 2002,48:191 - 207.
  • 4Chen Guanggan, Zhang Jian. Remark on global existence for the superctitical nonlinear Schrodinger equation with a harmonic potential[J]. Math Anal Appl,2006,320:591 - 598.
  • 5姚景齐.一类非线性Schrodinger方程的解.数学年刊:A辑,1986,7(4):413-422.
  • 6Glassy R T. On the Blowing up of Solutions to the Cauchy Problem for Nonlinear Schr6dinger Equations [J] J Math Phys, 1977, 18(9) : 1794-1797.
  • 7Takayoshi Ogawa, Yoshio Tsutsumi. Blow up of Ha Solutions for the One-Dimensional Nonlinear SehrOdinger Equations with Critical Power Nonlinearity[J]. Proe Amer Math Soc, 199I, 111(2): 487-496.
  • 8Takayoshi Ogawa, Yoshio Tsutsumi. Blow up of Solutions for the Nonlinear Schr6dinger Equation with Quartic Potential and Periodic Boundary Condition [C]//Functional Analytic Methods for Partial Differential Equations Lecture Notes in Mathematics. Vol. 1450. ES. 1.1: Springer, 1990: 236-251.
  • 9ZHANG Jian, LI Xiao-guang, WU Yong-hong. Remarks on the Blow-up Rate for Critical Nonlinear Schr6dinger Equation with Harmonic Potentia[J]. Applied Mathematics and Computation, 2009, 208(2): 389-396.
  • 10Ginibre J, Velo G. On a Class of Nonlinear Schr0dinger Equations. I The Cauchy Problem, General Case [J]. J Funct Anal, 1979, 32(1).. 1 32.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部