摘要
利用一个新的光滑性度量刻画多元Bernstein算子方向导数的特征,建立 Bernstein算子的导数与逼近函数光滑性之间的等价关系.同时,一个关于一元Bernstein算子的相应结果被推广到多元情形.
We characterize the directional derivatives of multidimensional Bernstein opera- tors by using a new measure of smoothness. This task is carried out by means of establishing a equaivalence relation between the asymptotic behaviour of derivatives of Inultidimensional Bernstein operators and the smoothness of the functions they approximate. Also, a known result on univariate Bernstein operators is extended to the multidimensional cases.
出处
《应用数学学报》
CSCD
北大核心
2001年第4期582-589,共8页
Acta Mathematicae Applicatae Sinica