期刊文献+

具共振条件下二阶m点边值问题解的存在性 被引量:3

EXISTENCE OF SOLUTION FOR SECOND ORDER M-POINT BOUNDARY VALUE PROBLEMS AT RESONANCE
原文传递
导出
摘要 本文利用重合度连续定理研究了具共振条件下二阶m点边值问题解的存在性,首先获得了一个一般性存在性定理,然后利用自治曲率界集概念给出了这类边值问题解存在的一些简明条件. In tis paper, by use of the coincidence degrae continuation theorem to study the existence of solution for second order m-point boundary value problems at resonance, we get a abstract existence results, and using the concept of autonomous curvature bound set relative to this m-point boundary value problems, we give some brief existence conditions of solution.
作者 刘斌 庾建设
出处 《应用数学学报》 CSCD 北大核心 2001年第4期596-606,共11页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(19831030号)资助项目.
关键词 共振条件 M点边值问题 重合度 自治曲率界集 非线性微分方程 Resonance condition, mm-point boundary value problem, coincidence degree,autonomous Curvature bound set
  • 相关文献

参考文献10

  • 1[1]Bernfela S R, La kshmikantham V. An Introduction to Nonlinear Boundary Value Problems. New York: Academic Press, 1974
  • 2[2]Granas A, Guenther R, Lee J. Nonlinear Boundary Value Problems for Ordinary Diffeential Equations.Warszawa: Dissert Math., 1985
  • 3[3]Agarwal R P. Boundary Value Problems for Higher Order Differential Equations. Singapore: World Scientific, 1986
  • 4[4]Mawhin J. Topological Degree and Boundary Value Problems for Nonlinear Differential Equations.In "Topological Methods for Ordinary Differential Equations" (Fitzpatrick P M, Martelli M, Mawhin J, Nussbaum R, Eds.). Lecture Notes in Mathematics, Vo1.1537, New York, Berlin: Springer-Verlag,1993, 74-142
  • 5[5]Il'in V, Moiseev E. Nonlocal Boundary Value Problems of the First Kind for a Sturm-Liouville Operator in its Differential and Finite Difference Aspects. Differential Equations, 1987, 23:803-810
  • 6[6]Gupta C P, Ntouyas S K, Tsamatos P Ch. Solvability of an m-point Boundary Value Problem for Seeond order Ordineary Differential Equations. J. Math. Anal. Appl., 1985, 189:575-584
  • 7[7]Gupta C P, Ntougas S K, Tsamatos P Ch. On an m-point Boundary Value Problems for Second Order Ordinary Differential Equations. Nonlinear Analysis, TMA, 1994, 23:1427-1436
  • 8[8]Gupta C P. A Note on a Second Order Three-point Boundary Value Problem. J. Math. Anal. Appl.,1994, 186:277-281
  • 9[9]Gaines R E, Mawhin J L. Coincidence Degree and Nonlinear Differential Equations. Lecture Notes in Mathematics, No.568, New York: Springer-Verlag, 1977
  • 10[10].Hartman P. Ordinary Differential Equations, 2nd Edition. Boston: Birkhauser, 1982

同被引文献4

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部