摘要
用可测集定义的上 (下 )方逼近算子 apr(apr)讨论可测空间与 Pawlak代数之间的关系 ,指出可测集即是明确集 ,可测空间 (U,A)可扩张为 (U,A* ) ,使其满足任意并 (交 )的封闭性 ,从而将文献 [1]的主要定理推广到一般情况。
This paper studies the relationships between measurable space and Pawlakean algebra by upper(lower) approximate operator defined by measurable sets. It is pointed out that any measurable set is definable set. Any measurable space (U,A) can be spanned to (U,A *) satisfying A t∈A *(t∈T), ∪t∈TA t∈A *. So the main results in paper are proper generally.
出处
《模糊系统与数学》
CSCD
2001年第4期40-43,共4页
Fuzzy Systems and Mathematics
基金
云南省教委科研基金资助
云南省自然科学基金资助项目
关键词
测度空间
可测空间
粗集
明确集
Pawlak代数
逼近算子
Measure Space
Measurable Space
Rough Set
Definable Set
Pawlakean Algebra
Upper (Lower) Approximate Operator