摘要
Hopenwasser A[1]猜想CSL代数上满足 Ringrose条件的算子集正是它的Jacobson根,Davidson K.R.[2]证明了对于二宽度 CSL代数,上述猜想是完全正确的.本文不仅清楚地刻画了二宽度CSL代数Jacobson根的结构,而且为研究CSL代数的根提供了一种途径.设是由可分Hilbert空间上的套M和N生成的二宽度 CSL,且 W= M∩N;本文得到二宽度 CSL代数的 Jacobson根与套W的根Rw,强根三者之间的一个重要关系同时也给出了真包含Rw的充分必要条件是M≠N且M≠N⊥.
Hopenwasser A.[1] guessed that the operator set of the CSL algebra satisfying Ringrose condition just is its Jacobson radical; Davidson K. R.[2] proved that this conjecture is true on the width-two CSL. In this paper, the structure of Jacobson radical on the width-two CSL is described clearly, and an. aproach for analyzing the CSLs radical is provided. Let be a width-two CSL generated by nests M and N in a separable Hilbert space, and W = M∩ N. We prove an important relationship , where is the Jacobson radical of alga and Rw, are the Jacobson radical and the stronger radical of nest W respectively. Also, it has been derivedt that the sufficient and necessary conditions for are M ≠ K and M≠K⊥.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2001年第6期1107-1112,共6页
Acta Mathematica Sinica:Chinese Series
基金
高等学校博士学科点专项利研基金资助项目
高等学校骨干教师资助计划资助项目