摘要
运用关联规则发现方法对人事信息库进行数据挖掘,生成了对当前数据库有效的关联规则,为高校管理决策提供科学依据。但数据库的更新操作经常发生,原来有效的部分规则可能在更新后的数据库中会成为无效,原无效的部分规则也同样有可能会成为有效。文章提出了EPUA算法,有效解决了数据更新后关联规则的更新问题,对FUP2算法进行了补充和改进。
We use the method of discovering association rules to mine knowledge in personnel databases,the generated rules are valid in the current database,which provide a scientific basis for college management and decision making.But the database is often updated,some original rules may become invalid in the updated database,and similarly,some origi-nal invalid rules may become valid.In this thesis,we propose EFUP algorithms ,and find an effective solution to the problem of maintaining the association rule,after the database is updated.We improve FUP2algorithms.
出处
《计算机工程与应用》
CSCD
北大核心
2001年第20期160-162,165,共4页
Computer Engineering and Applications
关键词
高校
人事管理
决策系统
数据挖掘
关联规则
data mining,association rule,large itemset,element ,maintenance