摘要
一种新型的顶点链码 (VCC) ,由于它所具有的平移和旋转不变性、起始点不变性、镜像不变性等特点而成为一种很好的图形边缘描述方法 .关于它的许多性质以及在图象识别中的应用正在引起广泛的兴趣 .本文从 Freeman链码(FCC)出发 ,提出了等位码元和切割码元的概念 ,找到了一种从 FCC到 VCC直接转化的算法 ,这样我们不仅获得了图形边缘的诸如旋转不变性等重要的性质 ,为 VCC链码的应用奠定了基础 ,更重要的是由此揭示了 FCC与 VCC两种不同的链码之间的关系 .
A new chain code which is termed Vertex chain code (VCC) becomes a good boundary representation of shapes because it is invariant under translation and rotation and may be starting point normalized and invariant under mirroring transformation. This paper proposed a notation of equipotential element and incision element of Freeman chain code (FCC) and found a way to get the VCC of shapes from its FCC. Therefore we not only get many properties of shapes but also reveal the relationship between the two kinds of chain code. The result of experiment also prove the validity of the proposed arithmetic .
出处
《小型微型计算机系统》
CSCD
北大核心
2001年第11期1326-1330,共5页
Journal of Chinese Computer Systems
基金
国家自然科学基金资助 (基金编号 990 3 84-11)