期刊文献+

感兴趣度的研究综述 被引量:1

An Overview of Measures of Interestingness
下载PDF
导出
摘要 In KDD,there are a number of patterns and rules discovered from large database by data mining,but most of them are of no interestingness to the user. How to get those that are useful and in-teresting is crucial. Therefore it is of great value to discuss the measures of interestingness of discovered patterns. Such measures of interestingness are divided into objective measures and subjective measures.The two kinds of measures of interestingness are respectively discussed in the paper. In KDD,there are a number of patterns and rules discovered from large database by data mining,but most of them are of no interestingness to the user. How to get those that are useful and interesting is crucial. Therefore it is of great value to discuss the measures of interestingness of discovered patterns. Such measures of interestingness are divided into objective measures and subjective measures. The two kinds of measures of interestingness are respectively discussed in the paper.
出处 《计算机科学》 CSCD 北大核心 2001年第10期43-45,共3页 Computer Science
基金 国家自然科学基金(69835001)
关键词 感兴趣度 知识发现 关联规则 数据挖掘 数据库 Knowledge discovery,Measures of interestingness,Objective measure,Subjective measure
  • 相关文献

参考文献7

  • 1周欣,沙朝锋,朱扬勇,施伯乐.兴趣度——关联规则的又一个阈值[J].计算机研究与发展,2000,37(5):627-633. 被引量:91
  • 2程继华,郭建生,施鹏飞.挖掘所关注规则的多策略方法研究[J].计算机学报,2000,23(1):47-51. 被引量:22
  • 3周欣,计算机研究与发展,2000年,23卷,1期,47页
  • 4Liu B,Proc of the 3rd Packfic-asia Conf on Knowledge Discovery and Data Mining,1999年,380页
  • 5Liu B,Proc of the 3rd int'l Conf on Knowledge Discovery and Data Mining,1997年,31页
  • 6Liu B,13th Nat'l Conf Artificial Intelligence,1996年,828页
  • 7Han J,SIGMOD Workshop on KDD,1996年

二级参考文献9

  • 11,Agrawal R, Mannila H, Srikant R et al. Fast discovery of association rules. In: Fayyad M, Piatetsky-Shapiro G, Smyth P eds. Advances in Knowledge Discovery and Data Mining. Menlo Park, California: AAAI/MIT Press, 1996. 307-328
  • 22,Brin S, Motwani R, Ullman J D et al. Dynamic itemset counting and implication rules for market basket data. In: Proc the ACM SIGMOD International Conference on Management of Data, Tucson, Arizon, 1997. 255-264
  • 33,Fayyad U M, Piatesky-shapiro G, Smyth P P. From data mining to knowledge discovery: an overview. In: Fayyad M, Piatetsky-Shapiro G, Smyth P eds. Advances in Knowledge Discovery and Data Mining. California:AAAI Press, 1996. 1-36
  • 44,Piatesket-Shapiro G. Discovery, analysis, and presentation of strong rules. In: Piatesky-Shapiro G, Frawley W J eds. Advances in Knowledge Discovery and Data Mining. Menlo Park, California:AAAI/MIT Press, 1991. 229-238
  • 55,Silberschatz A, Stonebraker M, Ullman J. What makes patterns interesting in knowledge discovery sysstems. IEEE Trans on Knowledge and Data Engineering, 1996, 8(6):970-974
  • 66,Symth P, Goodman R M. An information theoretic approach to rule induction from databases. IEEE Trans on Knowledge and Data Engineering, 1992, 4(4):301-316
  • 77,Toivonen H, Klemettinen M, Ronkainen P et al. Pruning and grouping discovered association rules. In: Mlnet Workshop on Statistics, Machine Learning, and Discovery in Database, Gete, Greece, 1995. 47-52
  • 8Aggarwal C C,Proc of the Int’ l Conf on Data Engineering,1998年,402页
  • 9Han J,Proc of Int’ l Conf Very Large Data Bases,1995年,420页

共引文献108

同被引文献7

  • 1McBryan OA 1994. GENVL AND WWW: Tools for taming the Web Proc. Intl. World Wide Web Conference, ed. By Nierstrasz O. Genneva: CERN
  • 2Menczer F,Belew R K. Artificial Life Applied to Adaptive Information Agents. Communication Technology Lab, Image Science Group ETH- Zertrum,ETZ F86
  • 3De Bra,Post. Searching for Arbitratry Information in the WWW:the Fish-Search for Mosaic
  • 4Salton G. The Smart Retrieval System-Experiment in Automatic Document Processing. Prentice-Hall, Englewood Cliffs, New Jersey 1971
  • 5Harper D,van Rijsbercen C J. An evaluation of feedback in document retrieval using co-occurrence data. Journal of Documentation, 1978,34:189~216
  • 6van Rijsbergen C J,Retrieval. London: Butterworths, 1979
  • 7邹涛,王继成,朱华宇,金翔宇,张福炎.WWW上的信息挖掘技术及实现[J].计算机研究与发展,1999,36(8):1019-1024. 被引量:120

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部