期刊文献+

鼓泡淤浆床甲醇合成(Ⅱ)工业装置的工程分析 被引量:3

METHANOL SYNTHESIS IN BUBBLE COLUMN SLURRY REACTOR (Ⅱ) ENGINEERING ANALYSIS OF INDUSTRIAL UNIT
下载PDF
导出
摘要 利用经热模试验验证的鼓泡淤浆床甲醇合成的数学模型 ,讨论了不同参数 ,如表观气速、反应器直径、床层高度等对床层颗粒轴向分布的影响规律 ,确定了万吨级三相床甲醇合成工业示范装置的主要结构参数和操作参数范围 .对两种不同工业原料气分别进行了模拟计算 .模拟结果表明 ,在三相床甲醇合成过程中 ,压力的影响最为显著 ,反应器内床层高度亦是较为重要的可调节参数 .在本文的操作条件下 ,当甲醇产量达到 1× 10 4t·a-1时 ,在较广的温度和压力范围内 ,对两种原料气 ,出口甲醇摩尔分数在 7%~ 10 % ,CO转化率为 40 %~5 0 % The relationships of particle axial distribution in the bubble column slurry reactor for the synthesis of methanol with various parameters, such as superficial gas velocity, reactor diameter and catalyst concentration, were discussed by means of a mathematical model verified by model test.The influence of the main construction parameters of the reactor and the operating parameters of industrial demonstration unit of 10000?t·a -1 were determined.The modeling results obtained under the conditions of two industrial synthesis gases showed that the influence of pressure in three-phase methanol synthesis process was most obvious, and slurry bed height was also a more important adjustable parameter.Under the operating condition in this paper, as methanol yield reaches 10000 tons per year, outlet methanol mole fractions is in the range from 0.07 to 0.10 and CO conversion is in the range from 40% to 50% within wider ranges of pressure and temperature with recycle and once-through of synthesis gases.
出处 《化工学报》 EI CAS CSCD 北大核心 2001年第12期1090-1094,共5页 CIESC Journal
基金 国家‘九五’重点攻关项目 (No.96 -A19-0 4-0 3)~~
关键词 鼓泡淤浆床反应器 甲醇 合成 工业示范装置 数学模拟 工程分析 数学模型 bubble column slurry reactor, methanol synthesis, industrial demonstration unit, mathematical modeling, engineering analysis
  • 相关文献

参考文献2

二级参考文献3

共引文献17

同被引文献21

  • 1陈闽松,应卫勇,房鼎业,朱炳辰.机械搅拌反应釜内三相淤浆床甲醇合成宏观反应动力学[J].燃料化学学报,1994,22(4):380-385. 被引量:22
  • 2颜涌捷,任铮伟.提升管三相流化床内的气液传质系数[J].高校化学工程学报,1996,10(1):52-58. 被引量:4
  • 3朱炳辰.化学反应工程[M].北京:化学工业出版社,2000.267.
  • 4Koide K, Hiroyuki SATO, Shinji Iwamoto. Gas holdup and volumetric liquid-phase mass transfer coefficient in bubble column with draught tube and with gas dispersion into annulus [J]. J Chem Eng Japan, 1983, 16(5): 407-413.
  • 5Koide K, Takazawa A, Komara M, Matsunaga H. Gas holdup and volumetric liquid-phase mass transfer coefficient in solid-suspended bubble column [J]. J Chem Eng Japan, 1984,17(5): 459-466.
  • 6Akita K, Yoshida F. Gas holdup and volumetric mass transfer corfficient in bubble cdolumns [J]. Ind Eng Chem Process Des Develop, 1973, 12(1): 76-80.
  • 7Brown W R,Frenduto F S. Fuel and Power Cuproduction-the Integrated Gasification/Liquid Phase Methanol (LPMEOH^TM )Demonstration Project. First Annual Clean Coal Technology Conference. Cleveland, OH, 1992.
  • 8Ozturk S,Shah Y T. Comparison of Gas and Liquid Phase Methanol Synthesis Processes. The Chemical Engineering Journal,1988,37:177-192.
  • 9Kodra D,Levec J. Liquid Phase Methanol Synthesis: Comparison Between Trickle-bed and Bubble Column Slurry Reactors.Chemial Engineering Science,1991 ,,16(9) : 2339-2350.
  • 10Peng X D,Toseland B A,Tijm P J A. Kinetic Understanding of the Chemical Synergy Under LPDMETM Conditions-once-through Applications, Chemical Engineering Science, 1999, 54 : 2787-2792.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部