期刊文献+

彩色图象的联合分布表示及检索技术 被引量:4

Joint Distribution-Based Image Representations and Retrieval
下载PDF
导出
摘要 随着图象数据的大量涌现 ,基于内容的图象检索技术已成为图象数据库领域的研究热点 .在图象检索系统中 ,由于颜色直方图方法简单方便 ,所以它已成为 CBIR系统中最常用的一种技术方法 ,然而 ,经典的颜色直方图方法存在诸多缺陷 ,例如它不能表示图象中颜色的空间分布信息 .为此 ,人们提出了直方图细化技术 ,即将图象的颜色分布表示扩充成为颜色和其他相关特征的联合分布 .为了进一步提高图象检索能力 ,在分析图象特征的基础上 ,给出了两种加权直方图模型 :其一是将图象的颜色分布和细节信号能量的分布集成到单个直方图之中 ;另一种模型是将图象颜色及其边界强度的联合分布集成到一个直方图中 .这两种方法不仅保持了经典直方图简单方便的特点 ,同时又有效地将空间信息集成到直方图中 .实验结果表明 。 As very large collections of images are becoming common, there is a growing interest in image database that can be queried based on image content. Content based image retrieval(CBIR) has become an important research issue for image database. As color histogram is simple to compute yet effective as a feature in detecting image to image similarity, it is an image feature widely used in CBIR. However, using the classical color histogram for indexing has a number of drawbacks. E.g. it does not contain information about the spatial locations or distributions of pixels in an image. To overcome its limitations, the refined histograms techniques are proposed on the basis of joint distribution of color and other features. In this paper, in order to provide a more accurate description of the image content, we propose two histogram models to refine the description of each pixel by some local features. One model is presented to integrate both color distribution and detail signal energy into a single histogram. Another is presented to integrate the edge strength into the definition of the color histogram. The experimental results show our histogram approaches can achieve an increased discriminative power compared to the classical color histogram technique for image retrieval.
出处 《中国图象图形学报(A辑)》 CSCD 北大核心 2001年第11期1084-1088,共5页 Journal of Image and Graphics
基金 国家"8 63"高科技基金项目 (863 -5 11-92 0 -0 0 1)
关键词 图象表示 颜色直方图 颜色分布 加权直方图 彩色图象分析 图象检索 空间约束 联合直方图 Image representation and retrieval, Color histogram, Color distribution, Weighted histogram, Color image analysis
  • 相关文献

参考文献15

  • 1[1]Sethi L K. Coman I, Day B et al. Color-WISE: A system for image similarity retrieval using color [A]. In: Proceedings Storage and Retrieval for Image and Video Database VI[C], San Jose. 1998:140~147.
  • 2[2]Ma W Y, Manjunath B S. NeTra:A toolbox for navigating large image databases[A]. In: Proceedings ICIP'97[C], New York,1997:568~571.
  • 3[3]Niblack W, Barber R, Equiz W et al. The QBIC project:Querying images by content using color, texture and shape[R].Research Report 9203. IBM Research Division, Almaden Research Center. 1993.
  • 4[4]Smith J R, Chang S F. VisualSEEK: A fully automated contentbased image query system[EB/OL]. From http:∥www. str.cclumbia. edu ~jrsmith html/pubs/acmm96/node2. html.
  • 5[5]Pentland A. Picard R W, Sclaroff S. Photobook: Tools for content-based manipulation of image databases [A]. In:Proceedings Storage and Retrieval for Image and Video Databases II[C]. San Jose, 1994:34~47.
  • 6[6]Swain M J. Ballard D H. Color indexing [J]. International Journal of Computer Vision, 1991,7(1):11~32.
  • 7[7]Androutsos D. Plataniotis K N, Venetsanopoulos A N. A novel vector-based approach to color image retrieval using a vector angular-based distance measure[J]. Computer Vision and Image Understanding, 1999,75(1/2) :46~58.
  • 8[8]Richman R M. Stonham T J. Content-based image retrieval using color tuple histograms[A]. In: Proceedings Storage and Retrieval for Still Image and Video Databases IV, SPIE, 1996,2670:2~7.
  • 9[9]Pass G. Zabih R. Histogram refinement for content based image rezrieval [A]. In: Proceedings of the 3rd IEEE Workshop on Application of Computer Vision [C ], Sarasota, Florida, 1996:96 ~ 102.
  • 10[10]Huang J, Kumar S R. Mitra M et al. Image indexing using correlograms [A]. In: Proceedings of IEEE Computer Vision and Pattern Recognition[C], San Juan, Puerto Rico, 1997:762~768.

同被引文献27

  • 1吴玲达 老松杨 王辰 等.多媒体信息系统[M].北京:电子工业出版社,2002..
  • 2[1]Zhang H J, Kankanhalli A, Smoliar S W. Automatic partitioning of full-motion video [J]. ACM Multimedia System, 1993,1(1): 10-28.
  • 3[2]Zhang Dong, Qi Wei, Zhang Hong-Jiang. A new shot boundary detection algorithm [C]. 2nd IEEE Pacific-Rim Conference on Multimedia (PCM 2001),2001. 10: 24-26.
  • 4[4]Borezky J S, Wilcox L D. A hidden Markov model framework for video segmentation using audio and image features [C]. In: Proc of the Int Conf on Acoustics Speech, and Signal Processing (Seattle,WA),1998. (6) :3741-3744.
  • 5[5]Jongho Nang, Seungwook Hong, Youngin Ihm. An efficient video segmentation scheme for MPEG video stream using macroblock information [C]. ACM Multimedia'99 Proceedings, 1999. 23-26.
  • 6[6]Zhang H J, Low C Y, Smoliar S W. Video parsing and browsing using compressed data [J]. Multimedia Tools and Applications,1995, 1:89-111.
  • 7[8]Gevers T, Smeulder A W M. Content-based image retrieval by viewpoint-invariant image indexing [J].Image and Vision Computing, 1999, 17 (7): 475 -488.
  • 8H J Zhang,A Kankanhalli,S W Smoliar.Automatic Partitioning of Full-motion Video[J].ACM Multimedia System, 1993, ( 1 ) : 10-28.
  • 9Dong Zhang,Wei Qi,Hong-Jiang Zhang.A New Shot Boundary Detection Algorithm[C].In :2nd IEEE Pacific-Rim Conference on Multimedia(PCM 2001 ) ,2001-10:24-26.
  • 10Borezky J S,Wilcox L D.A Hidden Markov Model Framework for Video Segmentation Using Audio and Image Features[C].In:Proc of the Int Conf on Acoustics Speech and signal Processing(Seattle,WA), 1998 ; (6) :3741-3744.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部