摘要
为了更加高效地利用基因工程技术提高植物对逆境胁迫的耐受性 ,需要在全基因组水平上对植物逆境胁迫耐受性的复杂机制进行整合性研究 .植物逆境胁迫耐受性功能基因组的研究可概括为 :利用胁迫特异性的表达序列标签 (EST)及cDNA微阵列 (或基因芯片 )技术筛选与胁迫相关的候选基因 ,然后利用反向遗传学等技术对候选基因的功能进行研究 ,利用酵母双杂交、正向遗传学等技术对基因及基因产物间的相互关系进行研究 .通过这些研究可以全面地了解植物对胁迫 (渗透、干旱、极端温度 )响应的复杂机制和相互作用以及相应的信号转导途径 。
The genomic-scale EST and genome sequencing, and cDNA microarray analyses that are now under way promise to rapidly isolate and identify all candidate genes essential for tolerance of osmotic potential, desiccation or temperature stresses. The large datasets generated by these efforts will provide basis for functional analysis with the use of tagged mutant collections, complementation and overexpression tests accompanied by microarray analyses. By using yeast two-hybrid technologies, the specific protein-protein interactions will be well-understood. When the functions of all genes that participate in stress adaptation or tolerance reactions are determined, an integrated understanding of the biochemical and physiological basis of stress responses in plants will be obtained, and then, it will be therefore possible to rationally manipulate and optimize tolerance traits for improved crop productivity.
出处
《生物化学与生物物理进展》
SCIE
CAS
CSCD
北大核心
2001年第6期797-801,共5页
Progress In Biochemistry and Biophysics
基金
国家重点基础研究专项经费资助项目 (G1 9990 1 1 70 0 )~~