摘要
设整数n≥3,定义二次均值 其中表示对模n的所有偶特征求和.证明了下列公式: 其中 φ(n)为Euler函数。
Let n≥3 be an integer and the mean square of L(1,X)is defined as V(n) = where the sum is extended over all even characters. Then the following formula is proved: V(n) = where φ(n) is Euler function.
出处
《清华大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
1991年第3期34-41,共8页
Journal of Tsinghua University(Science and Technology)
关键词
L-函数
二次均值
偶特征
原特征
L functions, character, primitive character, mean square