期刊文献+

关于线性时间复损码的研究 被引量:1

Study on Linear Time Loss-Resilient Codes
下载PDF
导出
摘要 本文对基于随机二部图的复损码进行了深入的研究 .提出了给定度分布对的复损码成功译码时可接受最大损失δ的一上界 ,通过对此上界的详细分析提出了求解复损码度分布对的一种算法 .这就从理论上说明了具有如上算法选取度分布对的复损码 ,应该优于文 [2 ]所给度分布对的复损码 . A detailed study of loss resilient codes based on random bipartite graphs are made in this paper.We propose the upper bound on the maximum tolerable loss fraction δ for which the decoding of the loss resilient code with a given degree distribution pair is successfull.The algorithm to find the degree distribution pair of loss resilient codes is presented by making a detailed analysis of this upper bound.This result shows that codes constructed from degree distribution pair obtained by the algorithm above should perform better than the degree distribution pair given in .Moreover,we prove loss resilient code with the definite degree distribution pair can be both encoded and decoded successfully in linear time.
出处 《电子学报》 EI CAS CSCD 北大核心 2002年第1期122-125,共4页 Acta Electronica Sinica
基金 国家自然科学基金 (No .69972 0 35)
关键词 复损码 随机二部图 编译码复杂度 度分布对算法 loss resilient code random bipartite graph encoding and decoding complexity degree distribution pair algorithm
  • 相关文献

参考文献7

  • 1[1]J W Byers, et al. A digital fountain approach to reliable distribution of bulk data [BD]. Available at http: //www. icsi. berkeley. edu/~ luby/, 1998.
  • 2[2]M Luby,et al. Practical loss-resilient codes [A] .Proc.of the 29th ACM Symposium on the Theory of Computing [C], 1997:15,0 - 159.
  • 3[3]P Elias Coding for two noisy channels [ A ]. Information Theory, Third London Symposium [C], 1955:61 - 67.
  • 4[4]R E Blahunt. Theory and practice of error control codes [ M ]. Addison Wesley, Reading, MA, 1983.
  • 5[5]J Blomer, M Mitzenmacher, A Shokrollahi. An XOR-based erasure-resilient coding scheme [ BD ]. Available at http://www. icsi. berkeley.edu/- luby/1995.
  • 6[6]L Rizzo. Effective erasure codes for reliable computer communication protocols. ACM Computer Communication [ J ]. Review, 1997,27 ( 2 ):24 - 36.
  • 7[7]M Luby, et al. Analysis of random processes via and-or tree evaluation[A].In Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms [C], Francisco California, 1998: 364 - 373.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部