摘要
通过数学推导,对描述合金凝固过程传输现象的连续介质模型(Bennon和Incropera,1987),体积平均模型(Beckermann和 Viskanta,1988),Poirier模型(Poirier等人,1990-1991),以及柱状枝晶凝固模型(Schneider和Beckermann,1995)的质量、动量、能量、溶质守恒方程进行了比较 结果表明,基于各相密度、导热系数、比热容分别相等且为常数,以及渗透率各向同性、液相粘度为常数的假设,各模型的守恒方程均可以推导出相同的简化方程.
The mass, momentum, energy and species conservation equations of continuum model (Bennon and Incropera, 1987), volume-averaged model (Beckermann and Viskanta, 1988), Poirier's model (Poirier et al., 1990-1991), and columnar dendritic solidification model (Schneider and Beckermann, 1995) for describing the transport phenomena in solidification of alloys were studied by using mathematical derivations. The results showed that the model formulations can be simplified to consistent forms based on the assumptions of constant density, conductivity, specific heat, and liquid viscosity as wen as isotropic permeability in the mushy zone.
出处
《金属学报》
SCIE
EI
CAS
CSCD
北大核心
2002年第1期35-40,共6页
Acta Metallurgica Sinica
基金
国家重大基础研究基金 G2000067208-3
清华大学机械工程学院研究基金资助项目
关键词
合金
凝固
传输现象
数学模型
alloy
solidification
transport phenomena
mathematical model