期刊文献+

随机扰动梯度近似中的矩收敛率

Convergence rate of moments for stochastic perturbation gradient approximation
原文传递
导出
摘要 采用递归估计器的序列求函数的最小值 ,并扩展了Spall的同步扰动随机近似方法 ,进而提出随机扰动梯度近似算法 .对于任意的 1≤q<∞ ,可用估计误差的范数Lq 来度量收敛率 ,序列的收敛速度为O(n- 2 ) ,( >0 ) .在最小点上 ,若代价函数的Hessian矩阵的所有本征值都在 1 2的右面 ,则误差指数 2可任意地接近 1 2 ,并且代价函数足够光滑 。 The sequence of recursive estimators is adopted for function minimization, and Spall's simultaneous perturbation stochastic approximation method is extended, and then an algorithm for stochastic perturbation gradient approximation is proposed. It is proved that this sequence converges under certain conditions with rate O(n -/2 ) for some >0, where the rate is measured by the L q-norm of the estimation error for any 1≤q<∞. It is shown that the error exponent /2 can be arbitrarily close to 1/2 if the Hessian matrix of the cost function at the minimizing point has all its eigenvalues to the right of 1/2, the cost function is sufficiently smooth, and a sufficiently high-order approximation of the derivative is used.
作者 刘传才
出处 《福州大学学报(自然科学版)》 CAS CSCD 2002年第1期28-32,共5页 Journal of Fuzhou University(Natural Science Edition)
基金 福建省自然科学基金资助项目 (F0 0 0 13 ) 福州大学科技发展基金资助项目 (XKJ(QD) - 0 12 1)
关键词 L混合过程 极限定理 线性随机系统 随机扰动梯度近似算法 矩收敛率 收敛速度 SPGA算法 L-mixing processes moments limit theorem linear stochastic systems
  • 相关文献

参考文献12

  • 1[1]Spall J C, Criston A. Model-free control of nonlinear stochastic systems with discrete-time measurements[J]. IEEE Trans Automat Contr, 1998, 43(9): 1 198-1 210.
  • 2[2]Winkler Gerhard. Image analysis, random fields and dynamic monte carlo methods: a mathematical introduction[M]. Berlin: Springer-Verlag, 1995.
  • 3[3]Krylov N V. Controlled diffusion processes[M]. Berlin: Springer-Verlag, 1980.
  • 4[4]Kushner H J, Yin G. Stochastic application algorithms and applications[M]. New York: Springer-Verlag, 1997.
  • 5[5]Ljung L. Analysis of recursive stochastic algorithms[J]. IEEE Trans Automat Contr, 1977, 22(4): 55-57.
  • 6[6]Gerencsér László. Rate of convergence of recursive estimators[J]. SIAM J Contr Optim, 1992, 30(5): 1 200-1 227.
  • 7[7]Benveniste A, Métivier M, Priouret P. Adaptive algorithms and stochastic approximations[M]. Berlin: Springer-Verlag, 1990.
  • 8[8]Chen H F, Duncan T E, Pasik-Duncan B. A stochastic approximation algorithm with random differences[A]. In: Gertler J, et al. ed. Proc 13th Triennal IFAC World Congr[C]. San Francisco: CA, 1996. 493-496.
  • 9[9]Gerencsér L. Convergence rate of moments in stochastic approximation with simultaneous perturbation gradient approximation and resetting[J]. IEEE Trans on Automatic Contr, 1999, 44(5): 894-905.
  • 10[10]Fox L. Two-Point boundary problems in ordinary differential equations[M]. Oxford: Clarendons, 1957.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部