摘要
将辛算法推广到复辛空间 ,指出了辛算法保定态 Schrodinger方程的 Wronskian守恒。将辛算法应用于强场一维模型的计算中 ,并与 Runge-Kutta法作了比较。结果显示 ,辛算法保持定态Schrodinger方程的 Wronskian守恒 ,适合于在充分远空间上计算线性无关解 。
The symplectic algorithm of Hamiltonian system is extended to the complex symplectic space. The numerical solutions of the 1-dimensional model of strong field are calculated by means of both symplectic and Runge-Kutta algorithms. The results show that the symplectic algorithm preserves the Wronskian, which is in good agreement with theoretical analyses, but the Wronskian calculated by using the Runge-Kutta algorithm increases rapidly after a long distance of computation. Therefore the symplectic algorithm is a better algorithm for the calculations of the 1-dimensional model of strong field.
出处
《强激光与粒子束》
EI
CAS
CSCD
北大核心
2002年第1期21-25,共5页
High Power Laser and Particle Beams
基金
国家自然科学基金 ( 197710 41
10 0 740 19
198740 2 5 )资助课题
国家重点基础研究专项经费 ( G19990 32 80 2 )资助课题