期刊文献+

一类二阶拟线性差分方程的非振动性定理 被引量:1

NON-OSCILLATION THEOREMS FOR A CLASS OF SECOND ORDER QUASILINEAR DIFFERENCE EQUATION
下载PDF
导出
摘要 研究了二阶拟线性差分方程Δ(pnφ(Δxn) ) +f(n ,xn) =0的渐近性 ,并给出了当任给 k≠ 0 , ∞n =n0φ-1kpn =∞时此方程存在Ac∞ ,A0c 型非振动解的充要条件以及存在A0 ∞ In this paper, the nonoscillatory properties of quasilinear difference equation of second order Δ(p nφ(Δx n))+f(n,x n)=0 are considered. Under the hypothese for any k≠0 , ∞]n=n 0n=n 0φ -1k]p np n=∞, we give the iif conditions of the Equation which exists nonoscillatory solutions belonging to the type of A c ∞ and A 0 c, and the sufficient conditions of the Equation which exists nonoscillatory solutions beloning to the type of A 0 ∞.
出处 《曲阜师范大学学报(自然科学版)》 CAS 2002年第1期8-12,共5页 Journal of Qufu Normal University(Natural Science)
基金 国家自然科学基金 ( 197710 5 3) 山东省青年自然科学基金资助项目
关键词 拟线性差方程 非振动性定理 差分算子 非振动解 渐近性态 充要条件 quasilinear difference equation nonoscillation difference operator
  • 相关文献

参考文献4

  • 1Elbert A,Kusano T.Oscillation and non-oscillation theorems for a class of second order quasilinear differential equations[J].Acta Math Hung,1990,56(3~4): 325~336.
  • 2He Xuezhong.Oscillatory and asymptotic behavior of second order nonlinear difference equations[J].J Math Anal Appl,1993,175: 482~498.
  • 3Drozdowicz A,Popenda J.Asymptotic of the second order difference equation[J].Proc Amer Math Soc,1987,99: 135~140.
  • 4Hooker W J,Patula T W.Riccati type transformations for second order linear difference equations[J].J Math Anal Appl,1981,82:451~462.

同被引文献7

  • 1Pachpatte B G. Explicit bounds on certain integnal inequalition [J]. J Math Anal Appl, 2002, 48 - 61.
  • 2Bihari I. A generaralization of a lemma of Bellman and itsapplication to uniqueness problems of differential equations [J]. Acta Math AcadSci Hungar, 1956,7:71 - 94.
  • 3Pachpatte B G. On some new inequalities relate to certain inequalitiesin the theory of differential equations [J]. J Math Anal Appl, 1995,189:128 - 144.
  • 4Pachpatte B G. An integral inequality to Bellman-Behari inequality [J]. Bull Soc Math Greece, 1974,15:7- 12.
  • 5Ou-Iang L. The boundness of solutions of linear differential equations Y" + A( t)y= 0 [J]. Shuxue Jinzhan, 1997,3:409- 415.
  • 6Bellman R, Cooke K L. Differential-differrence equations [M]. New York:Academic Press. 1993.
  • 7Lipovan O. A retarded Gronwall-like inequality and its applications [J]. J Math Anal Appl, 2000,252:389- 401.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部