摘要
基于一维距离像和神经网络研究宽带毫米波雷达目标识别问题 ,研究了用于雷达距离像序列识别的时延神经网络模型及其学习算法 ,并提出了基于距离像序列的宽带雷达目标时延神经网络识别方法 .还利用三种飞机缩比模型的暗室测量数据 ,研究了时延神经网络分类器中时延单元数目对分类精度的影响以及分类器的分类性能 .实验结果表明
Target recognition by using neural network based on high-resolution range profile (HRRP) with wideband millimeter wave (MMW) radar was researched. Time delay neural network (TDNN) model and its learning algorithm to range profile sequence input were studied first, the TDNN target recognition method based on range profile sequence with wide-band MMW radar was proposed. The effect of time delay unit number on classification precision and the performance of TDNN classifier using three typical aircraft dark-room data measured with scale model were studied. The results show that the proposed method has good application prospects.
出处
《红外与毫米波学报》
SCIE
EI
CAS
CSCD
北大核心
2001年第6期459-463,共5页
Journal of Infrared and Millimeter Waves
基金
国防预研基金 (编号 :96 J3.1.2 .KG0 1)
国防科技重点实验室基金 (编号 :98JS93.2 .2 .ZS930 2 )资助项目~~
关键词
目标识别
毫米波雷达
时延神经网络
高分辨径向距离像
分类器
target recognition
MMW radar
time delay neural network
high-resolution range profile
classifier