摘要
证明了对于双曲区域 {z =x +iy :x2a2 - y2b2 >1,x >0 }上的仿射拉伸AK(z) =Kx +iy的边界对应 ,其极值最大伸缩商等于区域上任意拓扑四边形的共形模与其像所构成的拓扑四边形的共形模之比的上确界 .
The boundary correspondence of the affine stretch A K(z)=K x+iy in the hyperbolic regions{z=x+iy:x 2a 2-y 2b 2>1,x>0} is proved to have the property that the extremal maximal dilatation is equal to the supremum of the ratios of the moduli of quadrilaterals.
出处
《复旦学报(自然科学版)》
CAS
CSCD
北大核心
2001年第6期645-648,共4页
Journal of Fudan University:Natural Science
基金
NationalNaturalScienceFoundationofChina(198710 14)