摘要
研究了一类偏差变元依赖状态自身的非自治泛函微分方程x'(t) = (x2(t) - t2) f (nx(t)) (这里),(0RRCf,单调递增, zf (z) > 0, (z≠0))过点(x , h) (其中h < 0 )的解的性态、解的存在性及延拓问题,得到了方程存在过点(x , h) (h < 0)的解的结论.
A type of nonautonomous differential-iterative equations with complex deviationargument as follows is considered: x'(t) = (x2(t) - t2)))((txfn where f C(R, R), f is increasingand zf (z) > 0 if z 0, when the equation satisfies initial condition x(x ) =h (h < 0). The behavior,existence and continuation of its solutions are studied. It is concluded that there exist solutions of the equation across any (x , h ) (h < 0).
出处
《上海理工大学学报》
CAS
北大核心
2001年第4期289-294,共6页
Journal of University of Shanghai For Science and Technology
基金
国家自然科学基金资助课题(19871005)
上海市教育发展基金资助项目
关键词
复杂偏差变元
非自治泛函微分方程
不动点定理
存在性
延拓
解
complex deviation argument
nonautonomous differential-iterative equations
fixed point theorem
existence
continuation