期刊文献+

周期震荡温度场非傅立叶分析 被引量:1

NON-FOURIER ANALYSIS OF PERIODICAL VIBRATION TEMPERATURE FIELD
下载PDF
导出
摘要 从双曲线型热传导微分方程出发 ,研究了当边界条件为高频周期加热的第一类边界条件时 ,其温度场的分布情况 ,并与从抛物 8线型导热微分方程出发的热扩散情况下的温度场进行了对比 .结果表明 ,在瞬态导热过程中 ,温度场是一种与扩散机制完全不同的热波 .本文还对热波及其产生的条件进行了深入的分析 ,指出松弛时间的大小和外界热扰动的数量级大小以及材料的热尺度等是决定是否应该考虑非傅立叶效应的主要因素 . Studies the temperature fields in which the heat border condition is a high_instantly periodical heat source from the hyperbolic heat conduction equation,points out that the result of comparison between the above temperature fields and the thermal diffusion temperature field which originates from a parabolic heat conduction equation shows that during the high_instant heat conduction,the temperature is a thermal wave different from thermal diffusion;analyzes the thermal wave and the condition for its generation,and concludes that'Non_Fourier Effect'should be considered depending upon the scale and rate of relax time and exterior thermal disturbance.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 2001年第4期25-28,2,共4页 Journal of Harbin Engineering University
关键词 周期震荡 温度场 非傅立叶分析 松驰时间 非傅立叶效应 热传导 扩散机制 periodical vibration temperature field Non_Fourier analysis
  • 相关文献

参考文献2

二级参考文献2

  • 1王如竹,Cryogenics,1995年,35卷,12期,883页
  • 2王如竹,Cryogenics,1990年,30卷,增刊,360页

共引文献27

同被引文献7

  • 1LI X K,YAO D M,LEWIS R W.A discontinuous Galerkin finite element method for dynamic and wave propagation problems in non-linear solids and saturated porous media[J].Int J Numer Meth Engng,2003,57,1775-1800.
  • 2CATTANEO C.A form of heat conduction equation which eliminates the paradox of instantaneous propagation[J].Comute Rends,1958,247:431-433.
  • 3VERNOTTE P.Les paradoxes de la theorie continue de l'equation de la chaleur[J].Compute Rendus,1958,246:3154-3155.
  • 4DUHAMEL P.Application of a new finite integral transform method to the wave model of conduction[J].International Journal of Heat and Mass Transfer,2004,47:573-588.
  • 5TAMMA K K,NAMBURU R R.Computational approaches with applications to non-classical and classical thermomechanical problems[J].Appl Mech Rev,1997,50:514-551.
  • 6WANG L Q.Solution structure of hyperbolic heat-conduction equation[J].International Journal of Heat and Mass Transfer,2000,43:365-373.
  • 7蒋方明,刘登瀛.非傅立叶导热的最新研究进展[J].力学进展,2002,32(1):128-140. 被引量:26

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部