期刊文献+

基于最优权值的选择性神经网络集成方法 被引量:4

SELECTIVE NEURAL NETWORK ENSEMBLE BASED ON OPTIMAL WEIGHTS
原文传递
导出
摘要 本文提出一种基于最优权值的选择性神经网络集成构造方法,在训练出个体神经网络之后,使用遗传算法计算出这些网络在加权平均方法中对应的最优权值,然后选择权值大于一定阈值的部分网络使用简单平均方法组成神经网络集成,理论分析和实验结果表明,与传统方法相比,本文方法使用部分网络能够取得更好的效果。 In this paper, a selective constructing approach for neural network ensemble based on optimal weights is proposed. This approach uses genetic algorithm to calculate the optimal weight values for the networks when the weighted average method is ased , and then those networks with weight larger than a given threshold value are ensembled using simple average. Theoretical analysis and experimental results show that this approach outperforms traditional ones.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2001年第4期476-480,共5页 Pattern Recognition and Artificial Intelligence
关键词 选择性神经网络 集成 最优权值 学习算法 人工智能 Neural Networks, Ensemble, Genetic Algorithm, Machine Learning, Optimization
  • 相关文献

参考文献1

  • 1Liu Y,IEEE Trans on Systems Man and Cybernetics.B,1999年,29卷,6期,716页

同被引文献20

  • 1L K Hansen,P Salamon. Neural network ensembles[J].IEEE transactions on pattern analysis and machine intelligence, 1990; 12(10):993~1001.
  • 2Z Zhou,J Wu,W Tang. Ensembling neural networks:many could be better than all[J].Artificial Intelligence,2002;137:239~263.
  • 3Zhang-quan Shen. Optimizing weights by genetic algorithm for neural network ensemble[C].In :F Yin,J Wang,C Guo Eds. International Symposium on Neural Networks ,Lecture Notes in Computer Science,2004; 3173: 323~331.
  • 4D Jiménez. Dynamically weighted ensemble neural networks for classification[C].In :the 1998 IEEE international joint conference on computational intelligence, 1998; 1: 753~756.
  • 5A Tsymbal,S Puuronen.Bagging and boosting with dynamic intergration of classifiers[C].In:Principles of data mining and knowledge discovery: 4th European conference, Lycon, France, 2000; 1910:116~125.
  • 6Zhang-quan Shen. Dynamically weighted ensemble neural networks for regression problems[C].In:Proceedings of the Third International Conference on Machine Learning and Cybernetics, Shanghai ,2004:3492~3496.
  • 7D F Specht. A general regression neural network[J].IEEE Transactions on Neural Networks,1991;2(6):568~576.
  • 8S Borra,A D Ciaccio. Improving nonparametric regression methods by bagging and boosting[J].Computional statistics & data analysis,2002; 38: 407~420.
  • 9Houck C R,Joines J A,Kay M G.A Genetic Algorithm for Function Optimization:A Matlab Implementation[R].Technical Report NCSU-IE-TR-95-09,North Carolina State University, Raleigh, NC, 1995.
  • 10L K Hansen, P Salamon. Neural Network Ensembles[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(10):993-1001.

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部