摘要
对紧致Riemann流形建立了一个强极大值原理。应用这个原理证明了:对非紧Riemann流形上的满足一定条件的方程,弱上、下解的存在性可保证弱解的存在性。
Establshes a strong maximum principle. By this principle proves that the existence of weak lower and super solutions can ensure the existence of weak solutions with some additional conditions on noncompact Riemann manifolds.
关键词
黎曼流形
半线性方程
弱解
算子
Riemannm anifolds
Weak solutions
/Semilinear equations