期刊文献+

自适应语音分段增强算法 被引量:3

AN ADAPTIVE SEGMENTATION AND WAVELET-DOMAIN ENHANCEMENT ALGORITHM (ASWE) FOR SPEECH SIGNAL
原文传递
导出
摘要 近年来小波理论在信号分析、处理中得到了广泛的应用,本文提出了一种自适应分段小波域语音增强(ASWE)算法,即采用局部余弦包变换对语音信号自适应分段,然后对每一段语音采用基于小波变换的语音增强处理。该方法不需要噪声的先验知识,且适合于缓慢变化的非平稳噪声,最后的仿真实验表明,该方法比直接用小波去噪效果好,是一种有效的语音增强技术。 Speech enhancement is one of the most improtant branches in speech signal processing. The theory of wavelet transform has been successfully applied in signal analysis and signal processing in recent years. One typical application in signal de-noising is the method proposed by Donoho based on the theory of nonlinear threshold in wavelet domain. This method can also be used in speech enhancement. Speech signal has two basic classes, voiced and unvoiced. The voiced signal has the feature of periodicity while the unvoiced signal has the same properties as the white noise. So, if the nonlinear thresholding in wavelet domain is directly applied to process one continuous speech, some part of the speech may be processed as noise. A belter choice to enhance speech is to select different wavelet processing methods for voiced and unvoiced signal. An adaptive segmentation and wavelet-domain enhancement algorithm (ASWE) for speech signal is proposed in this paper. The speech signal is adaptively segmented using local cosine packet transform firstly, and then each segment of speech is enhanced based on wavelet transform. This method does not need any priori information of the noise, and it is suitable for the nonstationary noise environments. The simulation results show that this method can offer better performance than the method using wavelet transform directly can.
作者 罗刚 刘贵忠
出处 《模式识别与人工智能》 EI CSCD 北大核心 2001年第3期321-326,共6页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金 国家教育部优秀年轻教师基金 陕西省自然科学基金
关键词 自适应分段 小波变换 语音信号处理 语音分段增强算法 Adaptive Segment, Speech Enhancement, Local Cosine Packet Transform, Wavelet Transform
  • 相关文献

参考文献5

二级参考文献4

  • 1Zhang J,IEEE Trans SP,1995年,43卷,6期,1489页
  • 2Mallat S,IEEE Trans IT,1992年,38卷,2期,617页
  • 3Zhang Qinghua,IEEE Trans NN,1992年,3卷,6期,889页
  • 4Yu Y,IEEE Trans Image Processing,1994年,3卷,6期,747页

共引文献30

同被引文献11

  • 1彭玉华.小波变换与工程应用[M].北京:科学出版社,2003..
  • 2Gulzow T, Engelsberg A, Heute U. Comparison of a discrete wavelet transformation and nonuniform ployphase filterbank applied to spectral-subtraction speech enhancement [ J ]. IEEE Signal Processing,1998,64:5 - 19.
  • 3Donoho D L, Johnstone I M. Ideal spatial adaptation by wavelet shrinkage [ J ]. Biometrika, 1994,81 (3) :425 -455.
  • 4Donoho D L. De-noising by soft-thresholding[ J ]. IEEE Trans Inform Theory, 1995,41 (3) :613 -627.
  • 5Bahoura M, Rouat J. Wavelet speech enhancement based on the teager energy operator [J]. IEEE Signal Process,2001,8( 1 ) :10 - 12.
  • 6Bahoura M, Rouat J. A new approach for wavelet speech enhancement[A]. Proc European Conf: on Speech Communication and Technology[C] ,2001:1 937 - 1 940.
  • 7Mallat SG. A theory for multiresolution signal decomposition[J]. IEEE Trans: on Pattern Analysis and Machine Intelligence, 1989,11 (7): 674 - 693.
  • 8Mahmoudi D. A microphone array for speech enhancement using multiresolution wavelet transform [A]. Proc of Euro Speech' 97 [ C ] , 1997: 339 - 342.
  • 9宋辉,刘加.基于微分麦克风阵列的自适应语音增强算法研究及DSP实现[J].自动化学报,2009,35(9):1240-1244. 被引量:8
  • 10李冲泥,胡光锐.一种改进的子波域语音增强方法[J].通信学报,1999,20(4):88-91. 被引量:28

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部