摘要
本文利用定性分析的方法,研究了一类具有Holling第Ⅲ类功能性反应的食饵与捕食者两种群且食饵具有常数存放率的微分方程模型,讨论了系统平衡点的性态,得到了可行平衡点的全局稳定性、解的有界性、系统无环及极限环存在、唯一的条件,并给出了这些结论的生态学意义。
In this paper,we study a class of differential equation models of prey-predator two groups with Holling's Ⅲ type functional response and the prey having costant adding rate by using qualitative analysis method.The characters of the equilibrium points are discussed. The conditions for the global stability of the practical equilibrium points, the boundedness of the sulotions, the nonexistence, the existence and the uniqueness of the limit cycle of the system are derived In the end the significance of the mathematical conclusions in the view of ecology is given
出处
《山东矿业学院学报》
CAS
1991年第1期91-100,共10页
Journal of Shandong University of Science and Technology(Natural Science)
基金
国家自然科学基金
关键词
食饵
常数
存放率
功能
生态系统
differential equations
ecological equilibrium
equilibrium points
qualitative analysis
global stability
boundedness
limit cycle