期刊文献+

一类无穷时滞泛函微分方程解的渐近性态 被引量:1

The asymptotic behavior of solutions to a class of functional differential equations with infinite delay
下载PDF
导出
摘要 研究一类无穷时滞泛函微分方程 x(t) =f(xt)解的渐近性态。当f为合作映射时 ,得到了解半流的单调性和解的单调性 ,给出了有界解的ω-极限集的结构 ,在一定的条件下证明了正平衡态的唯一性和解的收敛性 。 This paper is concerned with the asymptotic behavior of solutions to a class of functional differential equations with infinite delay. Under the assumption that the mapping of right-side of the equations is cooperative, the monotonicity of solution semiflows as well as solutions,and the structure of ω-limit set for bounded solutions are obtained. The uniqueness of positive equilibria and convergence of solutions are also gained under the additive assumptions. an example is contained to explain the main results in this paper.
机构地区 安徽大学数学系
出处 《安徽大学学报(自然科学版)》 CAS 2001年第4期1-6,共6页 Journal of Anhui University(Natural Science Edition)
基金 国家自然科学基金资助项目 (199710 2 6 )
关键词 泛函微分方程 远穷时滞 单调半流 偏序空间 正平衡态 w-极限集 渐近性态解 functional differential equation(FDE) infinite delay monotone semiflow partially ordered space positive equilibrium ω-limit set
  • 相关文献

参考文献2

二级参考文献3

  • 1王志成.中立型方程d/(dt)[x(t)+px(t—r)]+qx(t—s)—hx(t—v)=0振动性的充要条件[J]科学通报,1988(19).
  • 2徐钧涛.一类二阶微分差分方程边值问题的奇摄动解[J]应用数学和力学,1988(07).
  • 3郑祖庥.关于泛函微分方程状态空间的选择[J]安徽大学学报(自然科学版),1987(02).

共引文献33

同被引文献6

  • 1Chuanyi Zhang. Almost Periodic Type Function and Ergodicity[M]. Science Press (Kluwer Academic Publishers), 2002:87-194.
  • 2C. Zhang. Pseudo almost periodic solutions of some differential equations 2[J]. J. Math. Anal. Appl. , 1995, 192(2):543-561.
  • 3Y. Hino, S. Murakami. Almost automorphic solutions of abstract functional differential equations[J].J. Math. Anal. Appl. , 2003, 286:741-752.
  • 4G. M. N Guerekata. Existence and uniqueness of almost automorphic mild solutions to some semilinear abstract differential equations[J]. Semigroup Forum, 2004, 69(1) :80-86.
  • 5Hino, S. Murakami, T. Naito. Functional-Differential Equations with Infinite Delay[M]. Lecture Notesin Mathematics, 1991:50- 110.
  • 6杜燕飞,肖鹏.热传导方程Cauchy问题的概周期解[J].安徽大学学报(自然科学版),2008,32(6):14-17. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部