摘要
本文简要论述了群体遗传学的核心问题 ,生物群体在进化过程中 ,目标基因在中性状态 (没有选择压力 ) ,或选择压力随机波动情况下 ,基因频率随机变化动态特征 ,及描述这些特征的随机过程数学模型的原理 ,基本公式的来源 ,目前常用模型的主要类型、用途 ,解决实际问题时所需的约束条件 ,参数的设置及其遗传学意义 ,主要方程的解析公式等。主要模型包括离散状态的 Markov链和连续状态的 Markov过程 ,扩散方程 ,Kolm ogolov前向方程和后向方程 ,Wright- Fisher模型等。
The key questions on population genetics was intruduced briefly,including the models ,the sources of the equations of random changes of frequencies of target genes and the theories of stochastic models of its,under neutral state(no selection pressure),or under the state of random fluctuation of selection pressure,during the period of biological evolution.The major forms of the models,the ways of using,the conditions of restrictions in the practical problems of population genetics,the parameters of the models and its meaning were also discribed.The summarized main models in this paper included Markov Chain and Markov Procedure,diffusion equation,Kolmogolov forward equation and backward equation,Wright-Fisher model etc.
出处
《内蒙古农业大学学报(自然科学版)》
CAS
2001年第3期1-7,共7页
Journal of Inner Mongolia Agricultural University(Natural Science Edition)
基金
国家自然科学基金资助项目 (39960 0 55)