期刊文献+

基于小波变换和矢量量化的人脸图象压缩 被引量:3

Facical Image Compression Based on Wavelet Transform and Vector Quantization
下载PDF
导出
摘要 在图象的压缩编码中 ,矢量量化可以利用某特定类图象 (如人脸 )的统计特性 .为了在高压缩比下获得较好的压缩效果 ,提出了一种新的在小波变换域内进行矢量量化的算法 .该算法用树结构表示小波变换域系数 ,并根据各节点值的重要程度 ,从每一棵树中提取一个矢量 ,然后进行矢量量化 ;解码时 ,为了使矢量分量能正确地返回到原来树中的正确位置 ,需利用 EZW[1 ]、SPIHT[2 ]算法的思想标记这棵树 ,因为这样才能充分利用父子相关性和兄弟相关性 ,从而显著地减少了标记信息 .在提取矢量时 ,可用简单的阈值剪枝算法 ,也可用 SFQ[3]的最佳剪枝算法 ,而且后者能进一步提高峰值信噪比 .用该算法对人脸图象进行的压缩试验结果表明 ,在高压缩比 (10 0∶ 1左右 )下 ,恢复的图象质量 (视觉效果和峰值信噪比 )比通常的小波压缩算法 (如 EZW、SPIHT、SFQ等 )好得多 . In the compression of some particular kinds of image sources, such as human face, vector quantization should naturally be considered to exploit its statistical properties. In this paper, a new vector quantization method in the wavelet transform domain is proposed. We use tree structure to organize coefficients. In each tree, nodes are pruned or retained according to their importance. The survived nodes are serialized to be a vector, which will be the input of vector quantization; a map indicating the positions of these nodes is also stored, which is to be used in decoding. It embeds together the principles of EZW and SPIHT, exploiting fully both the parent children dependencies and brother dependencies. In our algorithm's framework, SFQ's tree pruning algorithm can also be embedded to increase the PSNR of reconstructed images, though we simply choose the threshold pruning method to reduce complexity of algorithm. Using the proposed algorithm, the reconstructed facial image in very low bit rate(about 0 08bpp) is superior to that of EZW, SPIHT, SFQ in both perception and PSNR. The algorithm is very suitable for the compression of particular kinds of image sources.
出处 《中国图象图形学报(A辑)》 CSCD 北大核心 2002年第1期44-49,共6页 Journal of Image and Graphics
关键词 小波变换 图象压缩 矢量量化 人脸图象 压缩编码 图象处理 Human face, Wavelet transform, Image compression, Vector quantization
  • 相关文献

参考文献10

  • 1Shapiro J, Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans. on Signal Processing, 1993,41(12): 3445-3462.
  • 2Said A, Pealman W A, A new fast and efficient image codec based on set partitioning in hierarchical trees[J]. IEEE Trans. on Circuits Syst. Video Technol., 1996,6(6):243-250.
  • 3Xiong Z, Ramchandran K, Orchard T. Space-frequency quantization for wavelet image coding [J]. IEEE Trans. on Image Processiong, 1997,6(5):677-693.
  • 4http://www.icsl.ucla.edu/-ipl/psnr-results.html.
  • 5郭田德,高自友.改进的静态图像零树编码算法[J].计算机学报,1999,22(7):692-697. 被引量:15
  • 6李波,汪海.基于小波包变换的分层预测图像压缩算法[J].计算机学报,1999,22(7):685-691. 被引量:10
  • 7李弼程,胡宗云.基于小波变换的图像矢量量化[J].信号处理,2000,16(1):32-36. 被引量:12
  • 8Linde Y, Bnzo A, Gray R. An algorithm for vector quantizer design[J]. IEEE Trans. Comm., 1980,28(1):84-95.
  • 9Ahalt S C, Krishnamurthy A K, Chen P et at. Competitive Learning algorithms for vector quantization [J]. Neural Networks, 1990, 3(5):277-290.
  • 10http://www.cipr.rpi.edu/research/SPIHT/.

二级参考文献4

共引文献32

同被引文献36

  • 1Mallat S. A theory of multiresolution signal decomposition: the wavelet representation. IEEE Trans,PAMI,1989,11(7):674-693.
  • 2Shapiro J M. Embedded image coding using zerotree of wavelet coefficients. IEEE Trans. Signal Processing,1993,41(12):3445-3462.
  • 3Kinsner W. Compression and its metrics for multimedia[A]. In: Proceedings of the 1st IEEE International Conference on Cognitive Informatics, Calgary, Canada, 2002. 107~121
  • 4Linde Y, Buzo A, Gray R M. An algorithm for vector quantizer design[J]. IEEE Transactions on Communications, 1980, 28(1): 84~95
  • 5Gray R M. Vector quantization[J]. IEEE ASSP Magazine, 1984,1(2): 4~29
  • 6Nasrabadi N N, King R A. Image coding using vector quantization: A review[J]. IEEE Transactions on Communications, 1988, 36(8): 957~971
  • 7Cosman P C, Gray R M, Vetterli M. Vector quantization of image subbands: A survey[J]. IEEE Transactions on Image Process, 1996, 5(2): 202~225
  • 8Rose K, Gurewitz E, Fox G C. Vector quantization by deterministic annealing[J]. IEEE Transactions on Information Theory, 1992, 38(4): 1249~1257
  • 9Zeger K, Vaisey J, Gersho A. Globally optimal vector quantizer design by stochastic relaxation[J]. IEEE Transactions on Signal Process, 1992, 40(2): 310~322
  • 10Karayiannis N B, Liu Z. Split and merge codebook design algorithms for image compression[J]. Journal of Electronic Imaging, 2002, 9(4): 509~520

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部