期刊文献+

一类最优光正交码的组合构作 被引量:1

原文传递
导出
摘要 光正交码具有民好的光学相关特性,它特别适用于光纤信道上的码分多址系统.利用Weil定理给出了参数为(15p,5,1)的最优光正交码的组合构作。其中p为模4余1且大于5的素数.由此,当正整数V的质因子均为模4余1且大于5的素数时,(15v,5,1)最优光正交码可利用已知的递归构适方法得到.
作者 唐煜 殷剑兴
机构地区 苏州大学数学系
出处 《中国科学(A辑)》 CSCD 北大核心 2002年第1期31-38,共8页 Science in China(Series A)
基金 国家自然科学基金资助项目(批准号10071056)
  • 相关文献

参考文献20

  • 1Maric S V, Moreno O, Corrada C. Multimedia transmission in fiber-optic LANs using optical CDMA. J Lightwave Technol, 1996, 14:2149~2153
  • 2Salehi J A, Brackett C A. Code-division multiple access techniques in optical fiber networks--part 1 and part 2. IEEE Trans Commun, 1989, 37:824~842
  • 3Chung F R K, Salehi J A, Wei V K. Optical orthogonal codes: design, aralysis and applications. IEEE Trans Inform Theory, 1989, 35:595~604 (Erratum: IEEE Trans Inform Theory, 1992, 38: 1429)
  • 4Yin J X. Some combinatorial constructions for optical orthogonal codes. Discrete Math, 1998, 185:201~219
  • 5Bitan S, Etzion T. Constructions for optimal constant weight cyclically permutable codes and difference families. IEEE Trans Inform Theory, 1995, 41:77~87
  • 6Buratti M. Recursive constructions for difference matrices and relative difference families. J Combin Designs,1998, 6:165~182
  • 7Abel R J R. Difference farnilies. In: Colbourn C J, Dinitz J H, eds. CRC Handbook of Combinatorial Designs. Boca Raton: CRC Press, 1996. 270~287
  • 8Chen K J, Zhu L. Existence of (q, k, 1) difference families with q a prime power and k = 4, 5. Designs, Codes and Cryptography, 1998, 15:167~173
  • 9Colbourn C J, Dinitz J H, Stinson D R. Applications of combinatiorial designs to communications, cryptography and networking. London Math Soc Lecture Note Ser, 1999, 267:37~100
  • 10Brickell E F, Wei V K. Optimal orthogonal codes and cyclic block designs. Congr Numer, 1987, 58:175~192

同被引文献7

  • 1CHEN K J,GE G N,ZHU L.Starters and related codes [J].J Statist Plann Inference,2000,86:379-395.
  • 2GE G N,YIN J X.Constructions for optimal (v,4,1) optical orthogonal codes[ J ].IEEE Trans Inform Theory,2001,47:2998-3004.
  • 3CHANG Y X,MIAO Y.Constructions for optimal orthogonal codes[J].Discrete Math,2003,261:127-139.
  • 4JOHNSON S M.A new upper bound for error-correcting codes [J].IEEE Trans Inform Theory,1962,(8):203-207.
  • 5CHUNG F P K,SALEHI J A,WEI V K.Optical orthogonal codes:Designs,analysis,and applications [ J ].IEEE Trans Inform Theory,1989,35:595-604.
  • 6SALEHI J A,BRACKET.Code-division multiple access techniques in optical fiber networks:Part 1 and Part 2 [J].IEEE Trans Commun,1989,37:824-842.
  • 7MARIC S V,MORENO O,CORRADA C.Multimedia transmission in fiber-optic LAN's using optical CDMA [J].J Lightwave Thecheol,1996,14:2149-2153.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部