摘要
本文引入序区间上 (- φ) -凸减算子 ,统一处理了一般凹 (凸 )和一类减算子 ,利用锥理论和新的叠代技巧在非紧非连续的假设下得到了不动点的存在唯一性和叠代收敛性 .
In this paper, the definition of (-φ)-convex operator is introduced, and the concave or convex operators and a class of decreasing operators are discussed. Without any compactness or continuity of the operators, the existence and uniqueness of fixed point are obtained. Finally the new results are applied to the nonlinear partial differential equation.
出处
《数学杂志》
CSCD
北大核心
2002年第1期53-58,共6页
Journal of Mathematics
基金
淮北煤炭师范学院科研基金资助的项目
关键词
序区间上(-φ)-凸算子
减算子
锥
不动点
凹算子
存在唯一性
convex operator on order interval, decreasing operator, convex (concave) operator, cone, fixed point