摘要
一个图 G的 2-因子 F是一个使得每个点v在 F中的度 dF(v)=2的 G的生成子图.易知 F中的每个圈是点不交的.如果 F中每个圈的长度为 4,我们说 G有四边形 2-因子F.我们首先在3-正则图上定义了3种扩张运算,然后讨论这些运算对平均亏格的影响.运用扩张运算,我们研究了含有四边形2-因子的3-正则图的平均亏格,得到了3-正则图的平均亏格与最大亏格之间的关系.
A 2-factor F, of a graph G, is a spanning subgraph of G such that dF(v) = 2 for any .v V(F). It is obvious that each circuit in F is vertex-disjoint. If the length of every circuIt in F is four, we call that C has a quadrangular 2-factor F. In this paper, we introduce three kinds of extensive operations on a 3-regular graph, and discuss the effect oil the average genus by these extensive operations. Using the extensive operations we then study the average genus of a 3-regular graph containing a quadrangular 2-factor. Finally we give the relationship between the maximum genus .and the average genus of a 3-regular graph.
出处
《数学进展》
CSCD
北大核心
2002年第1期56-64,共9页
Advances in Mathematics(China)
基金
This work is supported by the National Natural Science Foundation of China (Grant Number: 19801013).