期刊文献+

关于3-正则图的平均亏格(英文) 被引量:2

On the Average Genus of 3-Regular Graphs
下载PDF
导出
摘要 一个图 G的 2-因子 F是一个使得每个点v在 F中的度 dF(v)=2的 G的生成子图.易知 F中的每个圈是点不交的.如果 F中每个圈的长度为 4,我们说 G有四边形 2-因子F.我们首先在3-正则图上定义了3种扩张运算,然后讨论这些运算对平均亏格的影响.运用扩张运算,我们研究了含有四边形2-因子的3-正则图的平均亏格,得到了3-正则图的平均亏格与最大亏格之间的关系. A 2-factor F, of a graph G, is a spanning subgraph of G such that dF(v) = 2 for any .v V(F). It is obvious that each circuit in F is vertex-disjoint. If the length of every circuIt in F is four, we call that C has a quadrangular 2-factor F. In this paper, we introduce three kinds of extensive operations on a 3-regular graph, and discuss the effect oil the average genus by these extensive operations. Using the extensive operations we then study the average genus of a 3-regular graph containing a quadrangular 2-factor. Finally we give the relationship between the maximum genus .and the average genus of a 3-regular graph.
出处 《数学进展》 CSCD 北大核心 2002年第1期56-64,共9页 Advances in Mathematics(China)
基金 This work is supported by the National Natural Science Foundation of China (Grant Number: 19801013).
关键词 四边形2-因子 3-正则图 扩张运算 平均亏格 最大亏格 quadrangular 2-factor 3-regular graphs extensive operation average genus
  • 相关文献

参考文献10

  • 1Gross J L,Robbins D P and Tucker T W.Genus distributions for bouquets of circles[].J Combin Theory Series B.1989
  • 2Stahl S.Bounds for the average genus of the vertex-amalgamation of graphs[].Discrete Mathematics.1995
  • 3Thomassen C.The graph genus problem is NP-complete[].Journal of Algorithms.1989
  • 4Gross J L,Furst M L.Hierarchy for embedding-distribution invariants of a graph[].Journal of Graph Theory.1987
  • 5Chen Jianer.A linear-time algorithm for isomorphism of graphs of bounded average genus.SIM J[].Discrete Mathematics.1994
  • 6Huang Yuanqiu and Liu Yanpei.The maximum genus and 2-factors of graphs[].Chinese Annals of Mathe-matics.1997
  • 7Huang Yuanqiu,Liu Yanpei.Maximum genus and maximum nonseparating independent set of a 3-regular graph[].Discrete Mathematics.1997
  • 8Stahl S.The average genus of classes of graph embeddings[].Congressus Numerantium.1983
  • 9Ringeisen R D.Determining all compact orientable 2-manifolds upon which Km,n has 2-cell embeddings[].J Combin Theory Series B.1972
  • 10Furst M L,Gross J L and Statman R.Genus distributions for two classes of graphs[].J Combin Theory Series B.1989

同被引文献6

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部