摘要
1.问题:数列{a_n}中,已知a1=0a2=1,a_(n+1)=n(a_n+a_(n-1),求通项a_n 2.问题背景:n个元素m1,m2,…,m_n重新排列不排在原来位置的排列种数记为a_n,求a_n.1 2 3 4 5… n十1个元素重新排列不排在原来位置的排法为a_(n+1). a1不在1号位,则a1有n种排法. a2排在1号位,其它n-1个元素不排在原来位置的排法有a_(n-1)种. a2不排在1号位,则除a2的其它n个元素不排在原来位置的排法有a_n种. 所以a_(n+1)=n(a_n+a_(n-1),显然a1=0,a2=1.