期刊文献+

两个有趣的几何性质

下载PDF
导出
摘要 定理 1:若△DEF是△ABC的垂足三角形,则△DEF的三边长分别为acosA、bcosB、CcosC.(如图1) 证明:因为BE⊥AC,CF⊥AB,所以∠BEC=∠CFB=90°,所以B、C、E、F四点共圆.所以∠AEF=∠ABC,又因为∠EAF=∠BAC.所以B△AEF∽△ABC,所以EF/BC=AE/AB,在Rt△ABE中,cosA=AE/AB,所以EF/BC=cosA,所以,EF=acosA,同理可得DF=bcosB。
作者 丁遵标
出处 《数学教学通讯(中教版)》 2002年第2期39-39,共1页
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部