期刊文献+

等温时间对30Cr MnSi2 NiNb钢的组织和力学性能的影响 被引量:1

Effect of Holding Time on Microstructure and Mechanical Properties of Isothermally Treated High Strength Steel 30CrMnSi2NiNb
下载PDF
导出
摘要 研究了自行设计的高强钢 30CrMnSi2NiNb在稍高于Ms点温度经不同等温时间处理后的组织和力学性能。结果发现 ,随等温时间的延长 ,强度和硬度先下降后稍有上升 ,塑性和耐延迟断裂性能则先升高后稍有降低。当等温时间为 30~ 6 0min时 ,强度和硬度为最低而塑性和耐延迟断裂性能达到最高 ,此时抗拉强度约为 15 0 0MPa ,KISCC值约为 2 5MPa·m1/ 2 。组织观察和分析表明 ,随等温时间的延长 ,贝氏体转变趋于完全 ,贝氏体含量增加 ,马氏体含量降低 ,残留奥氏体含量先增加而后降低。可见 ,通过选择合适的等温工艺 ,可以使 30CrMnSi2NiNb钢中的残留奥氏体含量增加 。 The high strength steel 30CrMnSi2NiNb was developed by ourself.The microstructures and mechanical properties of this steel were investigated after isothermal quenching for different isothermal holding time.It was found that with increase of isothermal holding time,the strength and hardness is decreased firstly and then slightly increased,whereas the plasticity and delayed fracture resistance are increased firstly and then slightly decreased,showing an opposite trend with that of strength and hardness.For an isothermal holding time of about 30~60min,the strength and hardness are at the minimum values and the plasticity and delayed fracture resistance are reached the maximum values.The minimum ultimate tensile strength is nearly 1500MPa,and the maximum K ISCC value is about 25MPa·m 1/2 .Microstructure observation showed that the microstructure of isothermally quenched steel 30CrMnSi2NiNb is composed of bainite,martensite and retained austenite,the volume fraction of which changed in a similar trend with plasticity with the increase of isothermal holding time.Therefore,the delayed fracture resistance of steel 30CrMnSi2NiNb could be improved by selecting sutiable isothermal processing parameters resulting in an improvement in the fraction of retained austenite.
出处 《金属热处理》 CAS CSCD 北大核心 2002年第2期12-16,共5页 Heat Treatment of Metals
基金 973国家重大基础研究项目 (G1 9980 61 50 3)
关键词 高强钢 等温时间 复相组织 延迟断裂 力学性能 high strength steel isothermal holding time mixed microstructure delayed fracture
  • 相关文献

参考文献9

  • 1[1]Hasegawa T,Nakahara T,Yamada Y,et al.Delayed Failure of Steels for High-Strength Bolts[J].Wire Journal International,1992,(8):49-59.
  • 2[2]Hirth J P.Effects of Hydrogen on Properties of Iron and Steel [J].Metall.Trans.A,1980,11A(6):861-890.
  • 3[3]Gojic M,Kosec L.The Susceptibility to the Hydrogen Embrittlement of Low Alloy Cr and CrMo Steels[J].ISIJ International,1997,37(4):412-418.
  • 4[4]Young C H,Bhadeshia H.Strength of Mixtures of Bainite and Martensite[J].Mater.Sci.Technol.,1994,10(3):209-214.
  • 5[5]Ritchie R O,Castro C M H,Zackay.Effect of Silicon Additions and Retained Austenite on Stress Corrosion Cracking in Ultrahigh Strength Steels[J].Metall.Trans.,1978,9A(1):35-40.
  • 6[6]Li G F,Wu R G,Lei T C.Carbide-Matrix Interface Mechanism of Stress Corrosion Cracking Behavior of High-Strength CrMo Steels[J].Metall.Trans.A,1992,23A(10):2879-2885.
  • 7[7]Solana F,Takamadate C,Bernstein I M,et al.The Role of Retained Austenite in Stress Corrosion Cracking of Steels[J].Metall.Trans.A,1987,18A(6):1023-1028.
  • 8[8]Putatunda S K.Fracture Toughness of a High Carbon and High Silicon Stee[J].Mater.Sci.Engng.,2001,A297:31-43.
  • 9[9]Brook C R.Principles of the Heat Treatment of Plain Carbon and Low Alloy Steels[M].ASM International,1996.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部