期刊文献+

基于特征行必要-充分性匹配的字符识别方法 被引量:6

A Character Recognition Approach Based on Feature Line Necessary-Sufficient Condition Detection
下载PDF
导出
摘要 字符识别系统的性能在很大程度上依赖于所选取的字符特征.提出了一种基于特征行必要-充分性匹配的OCR(optical character recognition)方法.该方法使用字符模板的特征行集,通过对待识字符位图进行必要性和充分性双向匹配来识别字符.并采用基线对齐归一化方法在特征匹配时准确定位,使识别率和识别速度都较为理想.同时,对字符位图特征行的交互选择、测试和调整等方法做了详细介绍.另外,还提出了字符骨架与位图重叠显示的方案,有效地提高了对识别结果校对的速度.最后,通过测试和比较,对识别效率进行了分析. The performance of a character recognition system depends heavily on what features are being used. In this paper, an optical character recognition method based on match of feature lines is presented. By extracting the feature lines from bitmap of character and detecting the necessary-sufficient condition with templates by baseline superposed, this method carries out the recognition with a very high efficiency. The process of selecting and adjusting the feature lines from template is also described. Then, a new way for collating is proposed. By the hand of displaying skeletons of recognized characters that overlap the original bitmap, this method makes finding errors easier. Finally, the performance evaluation based on comparison is given.
出处 《软件学报》 EI CSCD 北大核心 2002年第1期85-91,共7页 Journal of Software
关键词 计算机图形学 字符识别 特征抽取 特征行 必要-充分性匹配 computer graphics character recognition feature extraction feature line necessary-sufficient condition match
  • 相关文献

参考文献8

  • 1Trier, O.D., Jain, A.K., Taxt, T. Feature extraction methods for character recognition--a survey. Pattern Recognition, 1996,29(4): 641~662.
  • 2Cho, S.-B. Recognition of unconstrained handwritten numerals by double self-organizing neural network. In: Proceedings of the 13th International Conference on Pattern Recognition. Vienna: IEEE Press, 1996. 426~430.
  • 3Chuang, Chen-Tsun, Tseng, Lin-Yu. A heuristic algorithm for the recognition of printed Chinese characters. IEEE Transactions on Systems, Man, and Cybernetics, 1995,25(4):710~717.
  • 4Ho, T.K., Hull, J.J., Srihari, S.N. Decision combination in multiple classifier system. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994,16(1):66~75.
  • 5Oh, II-Seok, Lee, Jin-Seon, Suen, Ching Y. Analysis of class separation and combination of class-dependent features for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999,21(10):1089~1094.
  • 6Oh, Il Seok, Suen, Ching Y. A feature for character recognition base on directional distance distribution. In: Werner, B., ed. Proceedings of the 4th International Conference on Document Analysis and Recognition. Ulm: IEEE Computer Society, 1997. 288~292.
  • 7Yamada, Keiji. Non-Uniformly sampled feature extraction method for Kanji character recognition. In: Werner, B., ed. Proceedings of the 4th International Conference on Document Analysis and Recognition. Ulm: IEEE Computer Society, 1997. 200~205.
  • 8Wang, Shu-hua, Li, Zuo, Yang, Ruo-yu, et al. A document image understanding system for tender. In: Lü, Jian, ed. Proceedings of the International Symposium on Future Software Technology'99. Tokyo: Software Engineers Association, 1999. 360~362.

同被引文献45

  • 1蔡钦涛,方水良,任俊.基于边缘生长的车牌定位新方法[J].公路交通科技,2004,21(11):110-113. 被引量:4
  • 2王卫,陈继荣,徐璟业.基于颜色特征的车牌快速定位[J].计算机工程与应用,2006,42(1):226-229. 被引量:7
  • 3Michael Unser. Texture classification and segmentation multiresolution autoregressive models [ J ]. Pattern Recognition, 1998, 25(2) : 173 - 188.
  • 4Jin-Seon, Ching Y. Analysis of class separation for handwriting recognition[J]. [EEE Transactions on Pattern Analysis and Machine Intelligence, 1999,21 (10) : 1089 - 1094.
  • 5章敏晋.图像处理和分析[M].北京:清华大学出版社,2003.43-132.
  • 6谷口庆治 朱虹 瘳学成 乐静 译.数字图像处理[M].北京:科学出版社,2002..
  • 7红牌楼主.论附加码在网络安全中的作用[EB/OL].http:// www.myrain.org/info/1234-1.htm,2004-09-08.
  • 8陈十三哥.解密验证码技术[EB/OL].http://www.juntuan.net/jtyc/ wenzhang/n/2005-07-30/6750.html,2005-07-30.
  • 9Hemon.XMB图片格式验证码的破解识别[EB/OL].http://www.hemon.info/blogview.asp? logID=3,2004-10-11.
  • 10陈友斌.非特定人脱机手写汉字识别方法的研究[D].北京:清华大学,1996-07.

引证文献6

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部