期刊文献+

Web日志挖掘中一种事务识别方法的改进 被引量:6

Improvement on a Transaction Identify Method in Web Mining
下载PDF
导出
摘要 从 web日志中发现有用的信息是所有 web站点管理者的迫切愿望 ,但 web服务器日志的不准确导致数据准备阶段的复杂性 .在数据挖掘以往的应用领域如 POS数据库中 ,存在着具有自然特征的事务 ,而在 web日志中不但没有这种事务 ,而且还不容易通过分析得到这种事务 .本文首先描述了引用长度事务分割方法的用户浏览行为模型 ,然后针对这种模型提出了两点改进 :增加了网络延时参数和对噪音数据处理的考虑 .改进后的模型能适应网络延时较大且随时间变化的情况 。 Web based organizations often generate large volumes of data in their daily operations. Analyzing such data can help these organizations to design marketing strategies, targeting customers in electronic commerce, improve system design and enhance server performance. But the inaccuracy of the Web log leads to the complexity of data preparation phase of Web usage mining. While traditional domains for data mining have naturally defined transactions, there is no convenient method of clustering web references into transactions. After describing a User Browsing Behavior model used in reference length transaction identification approach, the paper presents two improvements on this model: adding a parameter called network delay and introducing the disposal of noise data. The algorithm after improvement can acquire users browsing pattern more exactly.
出处 《小型微型计算机系统》 CSCD 北大核心 2002年第1期116-118,共3页 Journal of Chinese Computer Systems
关键词 数据挖掘 事务识别 日志 WEB 数据库 INTENET data mining Web mining transaction identification
  • 相关文献

同被引文献29

  • 1谌章俊.基于信息过滤的Web知识挖掘[J].现代情报,2005,25(6):60-61. 被引量:2
  • 2高卫华,谢康林.一种新的基于交叉性Web日志的事务识别算法[J].计算机仿真,2005,22(7):51-53. 被引量:3
  • 3战立强,刘大昕.一种Web事务识别的新模型及其频繁路径挖掘[J].哈尔滨工程大学学报,2005,26(6):758-762. 被引量:1
  • 4苏晶,潘蕾,徐汀荣.结合内容挖掘的事务识别改进[J].计算机应用,2006,26(6):1411-1414. 被引量:1
  • 5Robert Cooley,Bamshad Mobasher. Data preparation for mining world wide web browsing patterns[J]. Knowledge and Information Systems, 1999,1(1):209-221.
  • 6Chen M S. Data mining for path traversal patterns in a web environment[C]. In International Conference on Distributed Computing Systems, Hongkong, 1996: 385-392.
  • 7Peter Cheeseman. Bayesian Classification(AutoClass) Theory and Results[C[. Advances in Knowledge Discovery and Data Mining, USA, 1996: 153-180.
  • 8Jerome H, Friedman. Lazy Decision Trees[C]. in Proc 13th Nat'l Conf. Standford university Artificial Intelligence, 1996.
  • 9周志华.Three Perspectives of Data Mining[J].Artificial Intelligence,2003,143(1):139-146.
  • 10CHEN MS, PARK JS, YU PS. Efficient data mining for path traversal pattern[ J]. In IEEE Transaction on Knowledge and Data Engineering, 1998, 10(2) : 209 -221.

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部