期刊文献+

关于最大亏格达到下界的三连通三正则简单图(英文)

On 3-connected cubic graphs whose maximum genus attains the lower bound
下载PDF
导出
摘要 已被证明二连通三正则简单图的最大亏格至少为其圈秩的三分之一 且 ,当节点数可被三整除时 ,这个下界可以达到 本文提供了达到最大亏格下界的三连通三正则简单图所具有特殊结构 。 It is known that every 3 connected cubic graph has the maximum genus at least one third of its cycle rank.When the number of vertices is zero modulo three,the bound is tight.In this paper,we provide the structure of a 3 connected cubic graph whose maximum genus attains the lower bound.If the maximum genus of a 3 connected cubic graph is one third of its cycle rank,it has a triangle 2 factor.
出处 《信阳师范学院学报(自然科学版)》 CAS 2001年第2期138-143,共6页 Journal of Xinyang Normal University(Natural Science Edition)
基金 SupportedbyNNSFC(198310 80 )
关键词 曲面 亏格 三连通三正则简单图 三角形因子 节点数 圈秩 graph embedding surface genus factor
  • 相关文献

参考文献18

  • 1[1]CHEN J,ARCHDEACON D,GROSS J L. Maximum genus and connectivity[J]. Disc Math,1996,149: 19-29.
  • 2[2]CHEN J,GROSS J L. Limit points for average genus I. 3-connected and 2-connected simplicial graphs[J]. J Comb Theory Ser B,1992,55:83-103.
  • 3[3]CHEN J ,KANCHI S P,GROSS J L. A tight lower bound on the maximum genus of a simplicial graph[J]. Disc Math,1996,156:83-102.
  • 4[4]CHEN J, GROSS J L. Limit points for average genus Ⅱ: 2-connected non-simplicial graphs [J]. J Comb Theory B,1992,56:108-129.
  • 5[5]CHEN J,GROSS J L. Kuratowski-type theorems for average genus[J]. J Comb Theory B,1993,57:100-121.
  • 6[6]GROSS J L,TLICKER T W. Topological graph theory[M]. Wiley,New York,1987.
  • 7[7]JUNGERMAN M. A characterization of upper embeddable graphs[J]. Trans Amer Math Soc,1978,241:401-406
  • 8[8]LIU Y. Embeddability in graphs[M]. Boston,Kluwer and Science,1995.
  • 9[9]NEBESKY L. A new characterization of the maximum genus of a graph[J]. Czechoslovak Math J, 1981,31: 604-613.
  • 10[10]NEBESKY L. Every connected,locally connected graph is upper embeddable[J]. J Graph Theory, 1981,5: 205-207.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部