摘要
研究一类具耗散项的非线性双曲型方程utt-uxx+εut+f(u) =0的初边值问题解的渐近行为和blowup .获得了问题的解当t→ +∞有渐近行为及解在有限时间内blowup的一些充分条件 。
In this paper,the author study asymptotic behavior and blow up of solutions to the initial boundary value problem for a class of nonlinear hyperbolic equation with dissipation term.The sufficient conditions of the asymptotic behavior of solutions as t→∞ and blowing up of solutions in finite time for the initial boundary value problem are obtained,and several specific examples are also given
出处
《信阳师范学院学报(自然科学版)》
CAS
2001年第2期152-155,162,共5页
Journal of Xinyang Normal University(Natural Science Edition)
基金
国家自然科学基金!项目 (199710 6 8)
西安石油学院科研基金!资助项目 (99- 0 19)
关键词
非线性双曲方程
耗散
初边值问题
渐近行为
BLOW
up
nonlinear hyperbolic equation
dissipation
initial boundary value problem
asymptotic behavior
blow up