摘要
建立了强脉冲电磁场作用下铝合金凝固组织晶粒尺寸的人工神经网络 BP算法模型 .用该模型进行的模拟结果和实验数据吻合得较好 .研究表明 ,用这一方法可对脉冲电磁场作用下的凝固组织晶粒尺寸进行预测 ,为优化实验设计提供了简便实用的方法和手段 .
A BP algorithmic model was established for the artificial neural network of the grain size of Al-alloy's solidification structure under the action of strong pulse electromagnetic field. The simulating results were in agreement with the experimental results. It was shown that this BP algorithmic model of artificial neural network could be used to control the parameters and predict the solidified grain size under the action of strong pulse electromagnetic field. It provides us with an easy and practical method and means for optimizing experimental design.
出处
《应用科学学报》
CAS
CSCD
2001年第4期353-356,共4页
Journal of Applied Sciences
基金
国家重大基础研究发展规划基金资助项目 ( G19990 6 490 0 0 5 )
关键词
凝固组织
晶粒尺寸
人工神经网络
BP算法模型
铝合金
grain size of solidification structure
artificial neural network
BP arithmetic model