期刊文献+

铝合金凝固晶粒尺寸的人工神经网络研究 被引量:2

A Study on the Artificial Neural Network Model of the Solidified Grain Size of Alalloy
下载PDF
导出
摘要 建立了强脉冲电磁场作用下铝合金凝固组织晶粒尺寸的人工神经网络 BP算法模型 .用该模型进行的模拟结果和实验数据吻合得较好 .研究表明 ,用这一方法可对脉冲电磁场作用下的凝固组织晶粒尺寸进行预测 ,为优化实验设计提供了简便实用的方法和手段 . A BP algorithmic model was established for the artificial neural network of the grain size of Al-alloy's solidification structure under the action of strong pulse electromagnetic field. The simulating results were in agreement with the experimental results. It was shown that this BP algorithmic model of artificial neural network could be used to control the parameters and predict the solidified grain size under the action of strong pulse electromagnetic field. It provides us with an easy and practical method and means for optimizing experimental design.
出处 《应用科学学报》 CAS CSCD 2001年第4期353-356,共4页 Journal of Applied Sciences
基金 国家重大基础研究发展规划基金资助项目 ( G19990 6 490 0 0 5 )
关键词 凝固组织 晶粒尺寸 人工神经网络 BP算法模型 铝合金 grain size of solidification structure artificial neural network BP arithmetic model
  • 相关文献

参考文献5

二级参考文献9

  • 1鄢红春,何冠虎,周本濂,秦荣山,郭敬东,沈以赴.脉冲电流对Sn-Pb合金凝固组织的影响[J].金属学报,1997,33(4):352-358. 被引量:129
  • 2Chen Huanwen,Advanced Technology of Plasticity 1993-Proceeding of the Fourth International Conference on Technology of Plasticity,1993年,1881页
  • 3Hu Zongshi,Advanced Technology of Plasticity 1993-Proceeding of the Fourth International Conference on Technology of Plasticity,1993年,1261页
  • 4史忠植,神经计算,1993年,65页
  • 5陈森灿,清华大学学报,1992年,32卷,增刊,1页
  • 6Zhang W Q,Acta Metall Sin,1997年,10卷,6期,461页
  • 7Li J M,Script Metall Mater,1994年,31卷,2期,1691页
  • 8胡汉起,金属凝固,1985年,301页
  • 9王俊,孙宝德,疏达,周尧和.材料研究中的电脉冲处理技术[J].材料导报,1999,13(2):19-21. 被引量:7

共引文献100

同被引文献29

  • 1刘文庆,雷鸣,耿迅,李强,周邦新.显微组织对Zr-Sn-Nb-Fe锆合金耐腐蚀性能的影响[J].材料热处理学报,2006,27(6):47-51. 被引量:16
  • 2Vapnik V. The Nature of Statistical Learning Theory [M]. New York : Springer, 1995.
  • 3Liong S Y, Sivapragasam C. Flood stage forecasting with support vector machines [ J ]. Journal of the American Water Resources Association,2002,38 (1) :173 -186.
  • 4Gavrish V V, Ganguli S B. Support vector machines as an efficient tool for high-dimensional data processing : Application to sub-storm forecasting [ J ]. Journal of Geophysical Research-Space Physics ,2001,106 ( A12 ) :29911 - 29914.
  • 5Hua S J, Ssn Z R. A novel method of protein secondary structure prediction with high segment overlap measure : support vector machine approach [ J ]. Journal of Molecular Biology,2001,308 (2) :397 - 407.
  • 6Cai C Z,Han L Y, Ji Z L, et al. SVM-Prot: web-based support vector machine software for functional classification of a protein from its primary sequence [ J ]. Nucleic Acids Research,2003,31:3692 - 3697.
  • 7Cai C Z, Han L Y, Ji Z L, et al. Enzyme family classification by support vector machines[ J ]. Proteins,2004 55:66 -76.
  • 8Wen Y F,Cai C Z,Liu X H et al. Corrosion rate prediction of 3C steel under different seawater environment based on support vector regression [J]. Corrosion Science, 2009,51 ( 2 ) : 349 - 355.
  • 9Tang J L, Cai C Z,Zhu X J, et al. SVR-based predictive model for purity of the Mg-Al-hydrotalcite [ J ]. Advanced Materials Research,2011,189 : 1482 - 1485.
  • 10Kenned J, Eberhart. Particle swarm optimization [ C ]//Proc IEEE Int Conf Neural Networks, 1995 : 1942 - 1948.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部