摘要
线性潜在结构方程式模型还仅限于研究连续型随机变量 ,对于各领域大量出现的离散型随机变量 ,还没有适用的线性结构方程式模型。因此 ,离散型随机变量连续化的研究具有重要的意义。对已知的离散型随机变量的分布律 ,通过分段线性插值 ,构造出相应的连续型随机变量的概率密度函数 ,使连续型与离散型随机变量有相同的数学期望和方差 。
Linear potential structure equation is limit to study the continuous stochastic variable yet. For the disperse stochastic variable from various areas, there is no proper linear structure equation till now, and so it is important of studying how to continue the disperse stochastic variable.From a distribute table, by subsection linear interpolating function, it constructs a corresponding probability density function of the disperse stochastic variable. It is sure that the continuous stochastic variable have the same means and same variance as the disperse stochastic variable. Finally,their approximate degree is discussed by comparing two distribution function.
出处
《北京联合大学学报》
CAS
2001年第3期65-68,共4页
Journal of Beijing Union University
基金
国家自然科学基金资助项目"关于离散型随机变量的线性潜在结构方程式模型的研究"的子课题(195 710 0 7)。
关键词
离散型随机变量
连续化
分段线性插值
分布函数
disperse stochastic variable
to continue
subsection linear interpolating
distribution function