期刊文献+

离散型随机变量连续化处理的方法 被引量:2

The Method of How to Continue the Disperse Stochastic Variable
下载PDF
导出
摘要 线性潜在结构方程式模型还仅限于研究连续型随机变量 ,对于各领域大量出现的离散型随机变量 ,还没有适用的线性结构方程式模型。因此 ,离散型随机变量连续化的研究具有重要的意义。对已知的离散型随机变量的分布律 ,通过分段线性插值 ,构造出相应的连续型随机变量的概率密度函数 ,使连续型与离散型随机变量有相同的数学期望和方差 。 Linear potential structure equation is limit to study the continuous stochastic variable yet. For the disperse stochastic variable from various areas, there is no proper linear structure equation till now, and so it is important of studying how to continue the disperse stochastic variable.From a distribute table, by subsection linear interpolating function, it constructs a corresponding probability density function of the disperse stochastic variable. It is sure that the continuous stochastic variable have the same means and same variance as the disperse stochastic variable. Finally,their approximate degree is discussed by comparing two distribution function.
出处 《北京联合大学学报》 CAS 2001年第3期65-68,共4页 Journal of Beijing Union University
基金 国家自然科学基金资助项目"关于离散型随机变量的线性潜在结构方程式模型的研究"的子课题(195 710 0 7)。
关键词 离散型随机变量 连续化 分段线性插值 分布函数 disperse stochastic variable to continue subsection linear interpolating distribution function
  • 相关文献

参考文献1

  • 1王其元 任开隆 等.概率论与数理统计[M].北京:国防工业出版社,1993..

共引文献1

同被引文献17

  • 1吴伟.离散型随机变量的分段线性插值[J].苏州教育学院学报,2004,21(2):65-66. 被引量:2
  • 2唐秋华,刘保华,陈永奇,周兴华,丁继胜.结合遗传算法的LVQ神经网络在声学底质分类中的应用[J].地球物理学报,2007,50(1):313-319. 被引量:27
  • 3Wang D, Zeng X J, John A K. Hierarchical hybrid fuzzyneural networks for approximation with mixed input variables. Neurocomputing, 2007, (70) : 3019-3033.
  • 4Feng S, Li H X, Hu D. A HHFNN based on Gaussian new training algorithm for membership function for approximation. Neurocomputing, 2009, (72) :1631-1638.
  • 5Turk M, Pentiand A. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 1991, 1(3) :71-86.
  • 6Tibshirani R. Regression shrinkage and selection via the Lasso. J. Roy. Statist. Soc. Set, 1996,58(1):267-288.
  • 7Stoeva S, Nikov A. A fuzzy backpropagation algorithm. Fuzzy Sets Syst, 2000, (112) :27-39.
  • 8Zadeh L A. Fuzzy sets. Information and Control, 1965, (8) : 338-353.
  • 9Buckley J J, Hayashi Y. Fuzzy neural networks: a survey. Fuzzy Sets Syst. , 19 9 4, (66) : 1 -13.
  • 10Takagi T, Sugeno M. Fuzzy identification of systems and its application to modeling and control. IEEE Trans. Systems Man Cybernet, , 1985,(15) :116-132.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部