期刊文献+

一类指数型算子的一致逼近

Uniform Approximation by a Family of Exponential—Type Operators
下载PDF
导出
摘要 由文献[4]我们知道,当P(x)不同时,由齐次偏微分方程(α/αx×w(n,x,u)=n/p(x)×w(n,x,y)·(μ-x)及规范化条件integral from -∞=1 to ∞×w(n,x,u)du=1确定出的指数型算子integral from -∞=1 to ∞×w(n,x,u)f(u)·du亦不同。文[1]讨论了p(x)是至多二次的多项式时指数型算子的一致逼近问题,本文将就P(x)的更一般的情形给出一致逼近的正定理及饱和类。 Let Ln(f;x)=integral from n=-∞ to∞ W(n,x,u)f(u)du is the exponcmiai opreator which is determined by the homogeneous partial differential equation W(n,x,u)=n/p(x))W(n,x,u)(u—x)and the normalization condiuon integral from n=-∞ to∞ W(n,x,u)du=1.In this paper, suppose thd function ψ(x)=1/2p(x) satisfies conditions of the so—called weight function, we obtained some results as follows: ① for every f∈C{A,B},we have |L<sub>n</sub>(f)—f|≤Kω<sub>ψ</sub>(f;1/(1/2n)) ② 啊 n} is globally saturated on {A,B} with order {1/n} and with saturation class {f|f′loeally absolutely continuous and |ψ<sup>2</sup>f'|≤K<sub>f</sub>} ③ for any f∈{A,B} the following statements are equivaicnt to each other: (ⅰ) L<sub>n</sub>(f)—f=0(1) uniformly in (A,B), (ⅱ) if h→0 then f(x+hψ(x))—f(x) tends to zero uniformly in (A,B). (ⅲ) the function f(g<sup>-1</sup>(x)) is uniformly continuous on (p,q), where p,q and g are defined in (7).
作者 游功强 You Gongqiang (Department of Mathematics)
机构地区 绍兴师专数学系
出处 《绍兴师专学报(自然科学版)》 1991年第5期 50-53,共4页
关键词 指数型算子 权函数 一致逼近 exponential—type operators weight function uniform approximation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部