摘要
由文献[4]我们知道,当P(x)不同时,由齐次偏微分方程(α/αx×w(n,x,u)=n/p(x)×w(n,x,y)·(μ-x)及规范化条件integral from -∞=1 to ∞×w(n,x,u)du=1确定出的指数型算子integral from -∞=1 to ∞×w(n,x,u)f(u)·du亦不同。文[1]讨论了p(x)是至多二次的多项式时指数型算子的一致逼近问题,本文将就P(x)的更一般的情形给出一致逼近的正定理及饱和类。
Let Ln(f;x)=integral from n=-∞ to∞ W(n,x,u)f(u)du is the exponcmiai opreator which is determined by the homogeneous partial differential equation W(n,x,u)=n/p(x))W(n,x,u)(u—x)and the normalization condiuon integral from n=-∞ to∞ W(n,x,u)du=1.In this paper, suppose thd function ψ(x)=1/2p(x) satisfies conditions of the so—called weight function, we obtained some results as follows: ① for every f∈C{A,B},we have |L<sub>n</sub>(f)—f|≤Kω<sub>ψ</sub>(f;1/(1/2n)) ② 啊 n} is globally saturated on {A,B} with order {1/n} and with saturation class {f|f′loeally absolutely continuous and |ψ<sup>2</sup>f'|≤K<sub>f</sub>} ③ for any f∈{A,B} the following statements are equivaicnt to each other: (ⅰ) L<sub>n</sub>(f)—f=0(1) uniformly in (A,B), (ⅱ) if h→0 then f(x+hψ(x))—f(x) tends to zero uniformly in (A,B). (ⅲ) the function f(g<sup>-1</sup>(x)) is uniformly continuous on (p,q), where p,q and g are defined in (7).
作者
游功强
You Gongqiang (Department of Mathematics)
关键词
指数型算子
权函数
一致逼近
exponential—type operators
weight function
uniform approximation