期刊文献+

多目标优化方法检测随机受迫系统的混沌现象以及在心率变异信号分析中的应用 被引量:6

USING MULTI-OBJECTIVE OPTIMIZATION ALGORITHM TO DETECT CHAOTIC DETERMINISM IN TIMES SERIES FROM RANDOMLY FORCED MAPS AND ITS APPLICATIONS TO HEART RATE VARIABILITY
下载PDF
导出
摘要 心率变异信号往往很不规则 ,确定它是混沌还是噪声是目前研究的焦点。从非线性动力学的角度 ,虽然已进行了大量的工作 ,但迄今还没有明确的证据表明心率变异信号是混沌的。本文假设心率变异信号是其内在动力学机制和外部环境影响混合的产物 ,并提出一种多目标优化方法 ,以此获得一组既与心率变异信号尽可能接近又对于某种非线性动力学系统为确定的序列 ,然后计算依赖于初始值敏感的特征指数 ,定量刻划系统中确定性因素的动力学特性。在成功地检验了两类受迫混沌模型后 ,应用于心率变异信号分析 ,结果表明 Time series generated from biological systems alwuys display flnctions in the measured variables. Much effort had been directed at determining whether this variability reflected deterministic chaos, or whether it was merely 'noise'. Despite this effort, it had been difficult to establish the process of chaos in time series from biological systems. The output from such a system was probably the result of both its internal dynamics, and the input to the system from surroundings. This implied that the system should be viewed as a mixed system with both stochastic and deterministic components. We presented a multi objective optimization algorithm to find a time series that was as close as possible to the heart rate variability signals subjected to the constraint that it be deterministic with respect to some dynamics. If the determinism had chaotic attributes, i.e, a positive characteristic exponent that led to sensitivity to initial conditions. The method was tested by computer simulations, and applied to heart rate variability data. We found that the deterministic components of heart rate variability were chaotic.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2002年第1期59-68,共10页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金重点项目 (No .6973 5 10 1 69872 0 0 9) 教育部博士点基金资助 (No .980 2 863 0 )
关键词 混沌 粒子群优化算法 心率变异 多目标优化方法 非线性动力学 Chaos Particle swam algorithm Heart rate variability
  • 相关文献

参考文献10

  • 1Hoyer D, et al. Nonlinear Analysis of Heart Rate and Respiratory Dynamics[J]. IEEE Engineering in Medicine and Biology,1997,1:31~39.
  • 2Kurths J, et al. Quantitative analysis of Heart Rate Variability[J]. Chaos,1995,5:88~94.
  • 3Rapp PE. Phase-Randomized Surrogate can Produce Spurious Identifications of Nonrandom Structure[J]. Physical Letters A. 1996,192:27~33.
  • 4Chon Ki H, Kanters Jorgen K, Cohen Richard J, Hostein-Rathlou Niels-Henrik. Detection of chaotic determinism in time series from randomly forced maps[J]. Physica D,1997,99:471~486.
  • 5Eberhart RC, Dobbins RC. Simpson, Computational Intelligence PC Tools[M]. Boston Academic Press,1996.
  • 6He Zhenya, Wei Chengjian, Gao Xiqi, et al. Extracting rules from fuzy neural network by particle swam optimization[J]. ICEC′98:74~77.
  • 7Sidorowich John J. Modeling of chaotic times series for prediction, interpolation, and smoothing[J]. ICASSP 1992,IV:121~124.
  • 8Farmer JD, Sidorowich JJ. Optimal shadowing and noises reduction[J]. Physica D,1991,47:373~378.
  • 9Lee Chungyong, Williams Douglas B. A noise reduction method for chaotic signals[J]. ICASSP,1995,2:1348~1351.
  • 10Liu Feng, Zheng Chongxun, Wu Xiaoyu. Reconstruction phase space for nonlinear analysis of heart rate[C]. Proceedings of 20th Annual International Conference of IEEE Engineering in Medicine and Biology Society,1998,20(3):1576~1578.

同被引文献102

引证文献6

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部